Abstract
Infinite hypergraphs with sources arise as the canonical solutions of certain systems of recursive equations written with operations on hypergraphs. There are basically two different sets of such operations known from the literature, HR and VR. VR is strictly more powerful than HR on simple hypergraphs. Necessary conditions are known ensuring that a VR-equational simple hypergraph is also HR-equational. We prove that two of them, namely having finite tree-width or not containing the infinite bipartite graph, are also sufficient. This shows that equational hypergraphs behave like context-free sets of finite hypergraphs.
Using an alternate characterization of VR-equational simple hypergraphs
Preview
Unable to display preview. Download preview PDF.
References
Adámek, J., Koubek, V.: Least Fixed Point of a Functor. J. Comput. System Sci. 19 (1979) 163–178
Barthelmann, K.: How to Construct a Hyperedge Replacement System for a Context-Free Set of Hypergraphs. Tech. Rep. 7, Universität Mainz, Institut für Informatik (1996). Submitted for publication
Barthelmann, K.: On Equational Simple Graphs. Tech. Rep. 9, Universität Mainz, Institut für Informatik (1997). Submitted for publication
Barthelmann, K.: When Can an Equational Simple Graph Be Generated by Hyperedge Replacement?. Tech. Rep. 2, Universität Mainz, Institut für Informatik (1998)
Bauderon, M.: Infinite hypergraphs I. Basic properties. Theoret. Comput. Sci. 82 (1991) 177–214
Bauderon, M.: Infinite hypergraphs II. Systems of recursive equations. Theoret. Comput. Sci. 103 (1992) 165–190
Bauderon, M., Courcelle, B.: Graph Expressions and Graph Rewritings. Math. Systems Theory 20 (1987) 83–127
Caucal, D.: On the regular structure of prefix rewriting. Theoret. Comput. Sci. 106 (1992) 61–86
Caucal, D.: On Infinite Transition Graphs Having a Decidable Monadic Theory. In: auf der Heide, F. M., Monien, B. (eds.): Automata, Languages and Programming (ICALP '96), Lecture Notes in Computer Science, Vol. 1099. Springer (1996) 194–205
Courcelle, B.: Fundamental properties of infinite trees. Theoret. Comput. Sci. 25 (1983) 95–169
Courcelle, B.: The Monadic Second-Order Logic of Graphs, II: Infinite Graphs of Bounded Width. Math. Systems Theory 21 (1989) 187–221
Courcelle, B.: Graph Rewriting: An Algebraic and Logic Approach. In: van Leeuwen [23], Ch. 5, 193–242
Courcelle, B.: The monadic second-order logic of graphs IV: Definability properties of equational graphs. Ann. Pure Appl. Logic 49 (1990) 193–255
Courcelle, B.: The monadic second-order logic of graphs III: Tree-decompositions, minors and complexity issues. RAIRO Informatique théorique et Applications/Theoretical Informatics and Applications 26, 3 (1992) 257–286
Courcelle, B.: The monadic second-order logic of graphs VII: Graphs as relational structures. Theoret. Comput. Sci. 101 (1992) 3–33
Courcelle, B.: Structural Properties of Context-Free Sets of Graphs Generated by Vertex Replacement. Inform. and Comput. 116 (1995) 275–293
Courcelle, B.: The Expression of Graph Properties and Graph Transformations in Monadic Second-Order Logic. In: Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transformation, Vol. 1, Foundations. World Scientific (1997) Ch. 5, 313–400
Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-Rewriting Hypergraph Grammars. J. Comput. System Sci. 46 (1993) 218–270
Courcelle, B., Mosbah, M.: Monadic second-order evaluations on tree-decomposable graphs. Theoret. Comput. Sci. 109 (1993) 49–82
Engelfriet, J.: Context-Free Graph Grammars. In: Rozenberg and Salomaa [22], Ch. 3, 125–213
Muller, D. E., Schupp, P. E.: The theory of ends, pushdown automata, and second-order logic. Theoret. Comput. Sci. 37 (1985) 51–75
Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, Vol. 3, Beyond Words. Springer (1997)
van Leeuwen, J. (ed.): Handbook of Theoretical Computer Science, Vol. B, Formal Models and Semantics. Elsevier (1990)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Barthelmann, K. (1998). When can an equational simple graph be generated by hyperedge replacement?. In: Brim, L., Gruska, J., Zlatuška, J. (eds) Mathematical Foundations of Computer Science 1998. MFCS 1998. Lecture Notes in Computer Science, vol 1450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0055804
Download citation
DOI: https://doi.org/10.1007/BFb0055804
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-64827-7
Online ISBN: 978-3-540-68532-6
eBook Packages: Springer Book Archive