Skip to main content

When can an equational simple graph be generated by hyperedge replacement?

  • Contributed Papers
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1998 (MFCS 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1450))

Abstract

Infinite hypergraphs with sources arise as the canonical solutions of certain systems of recursive equations written with operations on hypergraphs. There are basically two different sets of such operations known from the literature, HR and VR. VR is strictly more powerful than HR on simple hypergraphs. Necessary conditions are known ensuring that a VR-equational simple hypergraph is also HR-equational. We prove that two of them, namely having finite tree-width or not containing the infinite bipartite graph, are also sufficient. This shows that equational hypergraphs behave like context-free sets of finite hypergraphs.

Using an alternate characterization of VR-equational simple hypergraphs

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adámek, J., Koubek, V.: Least Fixed Point of a Functor. J. Comput. System Sci. 19 (1979) 163–178

    Article  MATH  MathSciNet  Google Scholar 

  2. Barthelmann, K.: How to Construct a Hyperedge Replacement System for a Context-Free Set of Hypergraphs. Tech. Rep. 7, Universität Mainz, Institut für Informatik (1996). Submitted for publication

    Google Scholar 

  3. Barthelmann, K.: On Equational Simple Graphs. Tech. Rep. 9, Universität Mainz, Institut für Informatik (1997). Submitted for publication

    Google Scholar 

  4. Barthelmann, K.: When Can an Equational Simple Graph Be Generated by Hyperedge Replacement?. Tech. Rep. 2, Universität Mainz, Institut für Informatik (1998)

    Google Scholar 

  5. Bauderon, M.: Infinite hypergraphs I. Basic properties. Theoret. Comput. Sci. 82 (1991) 177–214

    Article  MATH  MathSciNet  Google Scholar 

  6. Bauderon, M.: Infinite hypergraphs II. Systems of recursive equations. Theoret. Comput. Sci. 103 (1992) 165–190

    Article  MATH  MathSciNet  Google Scholar 

  7. Bauderon, M., Courcelle, B.: Graph Expressions and Graph Rewritings. Math. Systems Theory 20 (1987) 83–127

    Article  MATH  MathSciNet  Google Scholar 

  8. Caucal, D.: On the regular structure of prefix rewriting. Theoret. Comput. Sci. 106 (1992) 61–86

    Article  MathSciNet  Google Scholar 

  9. Caucal, D.: On Infinite Transition Graphs Having a Decidable Monadic Theory. In: auf der Heide, F. M., Monien, B. (eds.): Automata, Languages and Programming (ICALP '96), Lecture Notes in Computer Science, Vol. 1099. Springer (1996) 194–205

    Google Scholar 

  10. Courcelle, B.: Fundamental properties of infinite trees. Theoret. Comput. Sci. 25 (1983) 95–169

    Article  MATH  MathSciNet  Google Scholar 

  11. Courcelle, B.: The Monadic Second-Order Logic of Graphs, II: Infinite Graphs of Bounded Width. Math. Systems Theory 21 (1989) 187–221

    Article  MATH  MathSciNet  Google Scholar 

  12. Courcelle, B.: Graph Rewriting: An Algebraic and Logic Approach. In: van Leeuwen [23], Ch. 5, 193–242

    Google Scholar 

  13. Courcelle, B.: The monadic second-order logic of graphs IV: Definability properties of equational graphs. Ann. Pure Appl. Logic 49 (1990) 193–255

    Article  MATH  MathSciNet  Google Scholar 

  14. Courcelle, B.: The monadic second-order logic of graphs III: Tree-decompositions, minors and complexity issues. RAIRO Informatique théorique et Applications/Theoretical Informatics and Applications 26, 3 (1992) 257–286

    MATH  MathSciNet  Google Scholar 

  15. Courcelle, B.: The monadic second-order logic of graphs VII: Graphs as relational structures. Theoret. Comput. Sci. 101 (1992) 3–33

    Article  MATH  MathSciNet  Google Scholar 

  16. Courcelle, B.: Structural Properties of Context-Free Sets of Graphs Generated by Vertex Replacement. Inform. and Comput. 116 (1995) 275–293

    Article  MATH  MathSciNet  Google Scholar 

  17. Courcelle, B.: The Expression of Graph Properties and Graph Transformations in Monadic Second-Order Logic. In: Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transformation, Vol. 1, Foundations. World Scientific (1997) Ch. 5, 313–400

    Google Scholar 

  18. Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-Rewriting Hypergraph Grammars. J. Comput. System Sci. 46 (1993) 218–270

    Article  MATH  MathSciNet  Google Scholar 

  19. Courcelle, B., Mosbah, M.: Monadic second-order evaluations on tree-decomposable graphs. Theoret. Comput. Sci. 109 (1993) 49–82

    Article  MATH  MathSciNet  Google Scholar 

  20. Engelfriet, J.: Context-Free Graph Grammars. In: Rozenberg and Salomaa [22], Ch. 3, 125–213

    Google Scholar 

  21. Muller, D. E., Schupp, P. E.: The theory of ends, pushdown automata, and second-order logic. Theoret. Comput. Sci. 37 (1985) 51–75

    Article  MATH  MathSciNet  Google Scholar 

  22. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, Vol. 3, Beyond Words. Springer (1997)

    Google Scholar 

  23. van Leeuwen, J. (ed.): Handbook of Theoretical Computer Science, Vol. B, Formal Models and Semantics. Elsevier (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Luboš Brim Jozef Gruska Jiří Zlatuška

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barthelmann, K. (1998). When can an equational simple graph be generated by hyperedge replacement?. In: Brim, L., Gruska, J., Zlatuška, J. (eds) Mathematical Foundations of Computer Science 1998. MFCS 1998. Lecture Notes in Computer Science, vol 1450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0055804

Download citation

  • DOI: https://doi.org/10.1007/BFb0055804

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64827-7

  • Online ISBN: 978-3-540-68532-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics