Skip to main content

On defect effect of bi-infinite words

  • Contributed Papers
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1998 (MFCS 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1450))

Abstract

We prove the following two variants of the defect theorem. Let X be a finite set of words over a finite alphabet. Then if a nonperiodic bi-infinite word w has two X-factorizations, then the combinatorial rank of X is at most card(X) - 1, i.e. there exists a set F such that \(X \subseteq F^ + \) with card(F) < card(X). Further, if card(X)=2 and a bi-infinite word possesses two X-factorizations which are not shift-equivalent, then the primitive roots of the words in X are conjugates. Moreover, in the case card(F)=card(X), the number of periodic bi-infinite words which have two different X-factorizations is finite and in the two-element case there is at most one such bi-infinite word.

Supported by Academy of Finland under Grant No. 14047.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Choffrut, C., Karhumäki, J., Combinatorics of words, in G. Rozenberg and A. Salomaa (eds), Handbook of Formal Languages, Springer, 1997.

    Google Scholar 

  2. Le Rest, E., Le Rest, M. Sur la combinatoire des codes a deux mots, Theoretical Computer Science 41, 61–80, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  3. Lothaire, M., Combinatorics on words, Addison-Wesley, 1983.

    Google Scholar 

  4. Harju, T., Karhumäki, J., On the defect theorem and simplifiability, Semigroup Forum 33, 199–217, 1986.

    MATH  MathSciNet  Google Scholar 

  5. Lentin, A., Schützenberger, M.P., A combinatorial problem in the theory of free monoids, Proc. University of North Carolina, 128–144, 1967.

    Google Scholar 

  6. Lyndon, R.C., Schützenberger, M. P., The equation a m = b n c p in a free group, Michigan Mathematical Journal 9, 289–298, 1962.

    Article  MATH  MathSciNet  Google Scholar 

  7. Karhumäki, J., Maňuch, J., Plandowski, W., On defect effect of bi-infinite words, TUCS Report 181, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Luboš Brim Jozef Gruska Jiří Zlatuška

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Karhumäki, J., Maňuch, J., Plandowski, W. (1998). On defect effect of bi-infinite words. In: Brim, L., Gruska, J., Zlatuška, J. (eds) Mathematical Foundations of Computer Science 1998. MFCS 1998. Lecture Notes in Computer Science, vol 1450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0055818

Download citation

  • DOI: https://doi.org/10.1007/BFb0055818

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64827-7

  • Online ISBN: 978-3-540-68532-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics