Abstract
In this paper we discuss the capability of the cellular programming approach to produce non-uniform cellular automata performing two-dimensional pattern classification. More precisely, after an introduction to the evolutionary cellular automata model, we describe a general approach suitable for designing cellular classifiers. The approach is based on a set of non-uniform cellular automata performing specific classification tasks, which have been designed by means of a cellular evolutionary algorithm.
The proposed approach is discussed together with some preliminary results obtained on a benchmark data set consisting of car-plate digits.
Preview
Unable to display preview. Download preview PDF.
References
J. von Neumann, Theory of Self-Reproducing Automata, University of Illinois Press, 1966.
T. Toffoli and N. Margolus, Cellular Automata Machines: A New Environment for Modeling, MIT Press, Cambridge, Massachusetts, 1987.
G. Adorni, A. Broggi, G. Conte, and V. D’Andrea, “A self tuning system for real-time optical flow detection”, in Proc. IEEE System, Man, and Cybernetics Conference, 1993, vol. 3, pp. 7–12.
S. Wolfram, Theory and applications of cellular automata, World Scientific, Singapore, 1986.
M. Sipper, Evolution of Parallel Cellular Machines: the Cellular Programming Approach, Springer-Verlag, Berlin, 1997.
M. Mitchell, J.P. Crutchfield, and R. Das, “Evolving cellular automata with genetic algorithms: A review of recent work”, in Proceeding of the first International Conference on Evolutionary Computation and its applications (EvCA ’96), 1996.
P.P. Chaudhuri, D.R. Chowdhury, S. Nandi, and S. Chattopadhyay, Additive Cellular Automata: Theory and Applications, IEEE Computer Society Press, Los Alamitos, CA, 1997.
M. Chady and R. Poli, “Evolution of cellular-automaton-based associative memories”, Tech. Rep. CSRP-97-15, University of Birmingham, School of Computer Science, May 1997.
M. Tomassini, “Evolutionary algorithms”, in Towards Evolvable Hardware: The Evolutionary Engineering Approach, E. Sanchez and M. Tomassini, Eds., Berlin, 1996, LNCS, pp. 19–47, Springer.
D.H. Wolpert, “Stacked generalization”, Neural Networks, vol. 5, pp. 241–259, 1992.
S. Cagnoni and G. Valli, “OSLVQ: a training strategy for optimum-size Learning Vector Quantization classifiers”, in Proc. IEEE International Conference on Neural Networks, June 1994, pp. 762–765.
T. Kohonen, Self-organization and associative memory (2nd ed.), Springer-Verlag, Berlin, 1988.
N. Margolus, “CAM-8: a computer architecture based on cellular automata”, in Pattern Formation and Lattice-Gas Automata, A. Lawniczak and R. Kapral, Eds. American Mathematical Society, 1994.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Adorni, G., Bergenti, F., Cagnoni, S. (1998). A cellular-programming approach to pattern classification. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds) Genetic Programming. EuroGP 1998. Lecture Notes in Computer Science, vol 1391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0055934
Download citation
DOI: https://doi.org/10.1007/BFb0055934
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-64360-9
Online ISBN: 978-3-540-69758-9
eBook Packages: Springer Book Archive