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Abstrac t .  A method is presented for the reconstruction of 3D heart 
wall motion directly from tagged magnetic resonance (MR) images, with- 
out prior identification of ventricular boundaries or tag stripe locations. 
Model tags were created as material surfaces which defined the location 
of the magnetic tags within the model. Image-derived forces acted on the 
model tags, while the model could also be manipulated by a small num- 
ber of user-controlled guide points. The method was applied to simulated 
images in which the true motion was specified, as well as to clinical im- 
ages of a normal volunteer. The RMS errors in displacement and strain 
calculated from the simulated images were similar to those obtained us- 
ing previous stripe tracking and model fitting methods. A significant 
improvement in analysis time was obtained for the normal volunteer, 
making the method more clinically viable. 

1 I n t r o d u c t i o n  

Magnetic resonance (MR) tissue tagging is a useful clinical tool for the non- 
invasive measurement of heart wall motion [1], [2]. Typically, multiple parallel 
tagging planes of magnetic saturation are created orthogonal to the image plane 
in a short time interval (5-12 msec) on detection of the R wave of the ECG. 
Often a grid of tag planes is created, whose intersection with the image plane 
give rise to dark bands ("image stripes"), 1-2 mm in width and spaced 5-10 mm 
apart ,  which deform with the tissue and fade according to the time constant T1 
( 700 msec in myocardium). Techniques for stripe tracking and strain estimation 
have been developed and validated in both 2D [3] and 3D [4]. Recently, a number 
of clinical studies have used MR tagging to characterize regional left ventricular 
wall motion and deformation in normal and diseased hearts [5],[6]. The clinical 
utility of this technique is currently limited by the prohibitively long time re- 
quired for image analysis. Most analysis methods require the prior extraction of 
the inner and outer boundaries of the left ventricle in each image together with 
the localization of the image tag stripes in each frame [4],[7],[8],[9],[10],[11],[12]. 
Several semi-automatic methods have been developed for tracking the tags and 
identifying the boundaries [4],[13],[14]. However, the image intensity information 
is insufficient to completely characterize the boundary and tag locations, due to 
limited spatial and temporal resolution, lack of contrast between muscle and 
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blood, and respiration and gating artifacts. User interaction with the tracking 
and segmentation processes is therefore essential. As 3D studies typically com- 
prise more than 200 images (5-12 short axis slices and 5-8 long axis slices, each 
with 5-20 frames), the time required for user interaction can be substantial. This 
paper describes a method for reconstructing regional left ventricular (LV) motion 
and deformation directly and simultaneously from a set of long and short axis 
tagged MR images, without the need for separate boundary and image stripe 
tracking. 

2 M e t h o d s  

2.1 F in i t e  E l e m e n t  M o d e l  

As done previously, a 16 element finite element (FE) model was constructed 
to describe the geometry and motion of the left ventricle [4],[6]. Each element 
employed bicubic Hermite interpolation in the circumferential and longitudinal 
directions, with linear interpolation transmurally. Nodes shared position and 
derivative information between elements, giving C 1 continuity. Within each ele- 
ment, the geometric field x was given as a function of element (material) coor- 
dinates ~ as a weighted average of nodal values: 

X(~1,~2,~3) =Y~k~n({1,{2,{3)X n (1) 
n 

where x ~ are the nodal values and ~Pn are the element basis functions. Note that 
the element coordinates ~ of material points do not change (by definition) as the 
model deforms. 

As a first step in the motion reconstruction problem, the approximate ge- 
ometry of the LV at end-diastole (ED) must be determined. This was done 
interactively by fitting a small number of guide points by linear least squares. 
A smoothing term constrained the model to smoothly approximate the guide 
points. In practice, the geometry of a subsequent time frame (eg. the second 
or third frame) was constructed first, then deformed to ED using the relative 
motion of the tag stripes to indicate the displacement of the guide points. 

2.2 Model  Tags 

Image stripes provide information about the underlying deformation of the heart 
but do not represent the motion of material points. Due to the tomographic na- 
ture of the imaging process, material points move through the fixed image slice 
planes during the deformation. This can result in the appearance and disappear- 
ance of image stripes due to the elliptical shape of the left ventricle. In order to 
apply the correct image motion constraints to the model, a set of "model tags" 
was created within the FE model. Model tags represent the material surfaces 
within the heart tissue which are tagged with magnetic saturation and which 
deform with the heart. 
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The location and orientation of the tag planes at the time of their creation 
(ED) are determined by the tagging pulse sequence parameters. Each tag plane 
P~ was described by a point on the plane pt and a normal nt to the plane. 
Similarly each image slice plane Pi was described by a point Pi and normal 
ni. Each tag plane was associated with one or more image slice planes; let Ti 
denote the set of tag planes associated with each image plane Pi. Model tags 
were found using a subdivision algorithm [15],[17]. Each element was subdivided 
into N subelements with subelement nodes equally spaced in ~ space. The tag 
planes were then intersected with the subelement mesh assuming linear varia- 
tion between subelement nodes. The result was a set of triangles whose vertices 
were given in element (material) coordinates. Fig. la  shows a schematic of this 
procedure. 
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Fig. 1. Calculation of model tags (a, left) and model tag-image intersections (b, right). 
a) thin lines: model subelement boundaries; dashed lines: tag plane Pc; thick lines: 
model tag triangles, b) thick lines: model tag triangles; dashed lines: image plane Pi; 
x: MTI points. 

2.3 Model  Deformat ion  

At any stage in the model fitting process, a collection of model tag - image 
intersection (MTI) points could be found by intersecting the model tags with 
the image planes. For each intersecting model tag triangle, the intersecting edges 
were interpolated to result in a set of MTI points spaced approximately 1-2 mm 
apart (Fig. lb). Let M(i, t) denote the set of MTI points associated with each 
Pt E Ti. The model was deformed from frame to frame to minimize the following 
objective function: 

. ( x ) :  six) + w~ [ . , .  - . ~  
Pi P, CTI nEM(i,t) 

(2) 

where S is a smoothing term, x(~n) are MTI points associated with tag plane Pt 
intersecting image Pi, and Xn are image stripe points associated with x(~n). The 
wn are weights derived from the image intensity function and nt are the normals 
to the original tagging plane Pt. The smoothing term measured the variation of 
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the deformation from a prior geometry, as described previously [4]: 

where F is the deformation gradient tensor defined with respect to the rectangu- 
lar Cartesian coordinate system. The smoothing weights were set small enough 
to have negligible effects in regions containing sufficient data points. In regions 
with few or no data points, the effect of this smoothing term is to reduce the 
variation of deformation across the model. 

The error function eqn. (2) was minimized using an iterative nonlinear least 
squares procedure (see Appendix and [15]). In summary, each iteration consisted 
of the solution of eqn. (2) by linear least squares (keeping the ~n constant). 
After each iteration, the MTI points x(~n) were recalculated, along with their 
associated image stripe points xn. The dot product employed in eqn. (2) is 
a statement of the aperture problem: The image stripes provide information 
about where the material point is in the direction normal to the tag, whereas 
the position of the material point along the tag is unknown. This constraint is 
similar to that used previously in optical flow problems [18]. 

2.4 Image Stripe Points 
Image stripe points were associated with each MTI point by searching the image 
in a small neighborhood for the most likely point on the image to which the MTI 
point should move. The likelihood function measured the probability that each 
pixel was located on the center of an image stripe. This was given by the output 
of stripe detection filters (one for each stripe orientation) convolved with the im- 
age. The filters had a Gaussian shape in the direction parallel to the stripe and 
a second derivative of a Gaussian in the direction normal to the stripe. The scale 
of the filter was tuned to the width of the tag stripes (in this paper all filters had 
a = 1.5 pixels). The search was carried out in a small neighborhood centered 
about each MTI point consisting of those pixels in the direction orthogonal to 
the image stripe and less than half a stripe spacing away from the MTI point. 
Rather than take the image point with the maximum filtered image value, the 
centroid of the neighbourhood (the average of all the points in the neighborhood 
weighted by their filtered image values) was used as the most likely stripe point. 
This was a more robust measure of the position of the stripe center than the 
maximum filtered value, and allowed the calculation of the image stripe center to 
subpixel resolution. Center-of-mass image constraints have previously been em- 
ployed for active contour models and are more stable than gradient-based image 
constraints [19]. Finally, the weight wn for each neighbourhood was calculated as 
the maximum value of the filtered image in the neighborhood. Myocardial pixels 
with low weight are located between stripes (where the search neighborhood did 
not include a stripe center) and on stripes running in the other direction. 

Previous studies have shown that image stripe orientations do not change 
substantially during the cardiac cycle (typically less than 20~ The search di- 
rection was therefore kept constant throughout the tracking process (orthogonal 
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to the original stripes). This enabled the result of the search to be precalculated 
before the stripe tracking process. For each image, a displacement image was gen- 
erated which stored the displacement in pixels from each pixel to the centroid 
of the filtered image in the search neighbourhood. To maintain subpixel resolu- 
tion, the displacement was multiplied by a scaling factor before being stored as 
a 1 byte/pixel image. The weight for each pixel was similarly precalculated as 
an image. Fig. 2 shows an example of a short axis image at end-systole (ES), 
showing raw, filtered, displacement and weighting images. 

Fig. 2. Precalculation of image forces as images. From left: raw image; result of the 
stripe detection filter in one orientation; displacement image (lighter greylevels indicate 
displacement towards the top right, darker greylevels indicate displacement in the 
opposite direction); weight image (lighter greylevels indicate higher weighting) 

2.5 User Interact ion  

It is not uncommon for model tags to move more than one stripe spacing between 
frames. In order to bring the model into approximate correspondence with the 
image stripes a fit to guide points was performed. This involved the minimization 
of eqn. (2) above with small number of guide points in place of the image stripe 
points. The smoothing term ensured a smooth interpolation between guide point 
displacements. To define a guide displacement the user clicked on a MTI point 
on the image and then clicked on a point to which the MTI point should move. 
The normal in the dot product of eqn. (2) was the tag normal associated with 
the MTI point. After these "guide iterations" the MTI points should be within 
range of the image stripe forces and the fit could proceed with "image iterations" 
as above. The user was also able to interact with the image iteration by selecting 
a group of MTI points and redefining their associated image stripe points. 

2.6 Image  Acquisi t ion 

In vivo clinical images of a normal volunteer were acquired with a Siemens Vi- 
sion MR scanner using breath-hold segmented k-space imaging sequences. Eight 
parallel short axis slices were obtained orthogonal to the central axis of the LV 
spaced 11.5 mm apart, together with six long axis slices oriented 30 ~ apart about 
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the LV central axis. Each slice was 8 mm thick and comprised 19 frames through 
the cardiac cycle. The image resolution ranged from 1.17 to 1.37 mm per pixel, 
depending on the field of view. 

2.7 Simulated Deformat ion 

Simulated images were also generated of a prescribed deformation, in order to 
determine whether errors are introduced in the calculation of model tags and 
MTI points or in the search for image stripe centroids. An initial regular ED 
geometry was constructed in prolate spheroidal coordinates (focal length of 42 
mm), with inner surface at A = 0.60 and outer surface at ~ = 0.85. The final 
ES geometry had an inner surface at A = 0.40 and outer surface at A = 0.82, 
with a longitudinal contraction of 15% in # and uniform twist in 0 from 24 ~ and 
21 ~ at the endocardial and epicardial apex respectively to - 8  ~ and - 7  ~ at the 
endocardial and epicardial base respectively. The prolate model was converted to 
rectangular Cartesian coordinates and model tags (8ram apart) were calculated 
for 8 short axis images spaced 10 mm apart and 6 long axis images spaced 
30 ~ apart about the central axis. The images were then simulated by assigning 
each pixel within the inner and outer boundaries to a representative myocardial 
greylevel and each pixel within 1 mm of a MTI point to a representative stripe 
greylevel. 

The simulated images were also analyzed using previously described stripe 
tracking and model fitting procedures [4]. Briefly, the stripes were tracked in each 
slice using an active contour model of the 2D tagging grid. The finite element 
model was then used to reconstruct the 3D displacements of material points by 
fitting the motion from ES to ED. Then the ED model was deformed to ES by 
fitting the reconstructed 3D displacements of the stripe data. 

3 R e s u l t s  

3.1 Initial Geometry  

In total 103 guide points were required for the ED geometry of the normal 
volunteer (53 for the endocardial surface and 50 for the epicardial surface). As 
there were 14 image slices this represents 3-4 points per surface per slice. The 
geometry in the third frame was determined first, then the guide points were 
moved to match the motion of the stripes back to the ED frame. The entire 
process required less than 10 minutes to complete, compared with approximately 
30 minutes to manually define each boundary on each slice individually. 

3.2 Mode l  Deformat ion  

Using the ideal tag plane positions and orientations derived from the imaging 
parameters, 182 model tags were found within the ED geometry. The model was 
then deformed to each frame by fitting the location of the MTI points to the 
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image stripes. A small motion occurred between the tag creation and the time of 
the ED image, so this frame was also fitted in the same manner. The deformed 
ED geometry was then used as the prior (undeformed state) in the smoothing 
term for all subsequent frames. Fig. 3 shows three of the model tags (two from the 
short axis images and one from a long axis image) at tag creation and ES. Fig. 3 

Fig. 3. a (left): Model tags at the time of creation (left) and at ES (right). The two 
lighter tags are from the short axis images, while the dark tag is from a long axis image. 
b (right): Short (left) and long (right) axis images at ES with MTI points overlayed. 

shows short and long axis images at ES with MTI points overlayed. Typically, 
one guide iteration (--~30 guide points) and two image iterations (--~4900 points) 
were sufficient to achieve good correspondence between image stripes and MTI 
points. 

The 3D tracking procedure took ,~5 min per frame, representing a consider- 
able time saving over the previous method [4] which required definition of the 
inner and outer boundaries and image stripe tracking for each frame followed 
by 3D model fitting (,-~45 rain per frame). Each iteration (least squares fit) took 
,-~30 sec to compute on a 180 Mhz R5000 workstation, however the code has not 
been optimized for execution speed. 

3.3 S i m u l a t e d  D e f o r m a t i o n  

The simulated ED geometry was deformed to fit the simulated image stripes in 
the same manner as above. Typically, 2 guide points per frame were required 
to bring the model into approximate correspondence. The root mean squared 
(RMS) errors in the displacement were 0.38 mm in x, 0.34 mm in y and 0.34 
mm in z (the image pixel size was 1.17 mm). RMS errors in strain were 0.022 in 
circumferential strain (true range -0.357 to 0.088), 0.021 in longitudinal strain 
(true range -0.350 to -0.117) and 0.187 for radial strain (true range 0.446 to 
0.930). 

These images were also analyzed using a previously described 2D stripe track- 
ing algorithm and 3D finite element model fitting technique. The RMS errors of 
the resulting displacement were 0.29 mm in x, 0.38 mm in y and 0.38 mm in z. 
Strain estimates had RMS errors of 0.023 in circumferential strain, 0.020 in lon- 
gitudinai strain and 0.186 in radial strain. Thus the direct 3D tracking method 
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resulted in similar errors to the 2D tracking/3D fitting method. The error was 
greatest in the radial (transmural) direction and was mainly due to the lack of 
tag resolution in this direction, especially at the apex where there was only o n e  

stripe orthogonal to the radial direction. 

4 D i s c u s s i o n  

This paper describes a method for directly reconstructing the shape and motion 
of the LV. Use of a 3D model to track the stripes implicitly constrains the 
motion in each slice to be compatible with its 3D neighbours. Thus, all stripes 
in all images contribute to the tracking process in a coherent 3D manner. User 
interaction is also constrained to act on the 3D model, thereby maintaining 
compatibility between displacements and reducing the amount of interaction to 
a minimum. Features of the method were: a) the use of very sparse guide points 
in combination with model smoothing to estimate the approximate geometry 
at ED and gross motion of the LV, b) the calculation of model tags and MTI 
points for use in the objective function eqn. (2) and c) precalculation of the 
image displacements, reducing the search for corresponding image stripe points 
to a simple look-up operation. 

Park et al. [8],[9] developed a class of deformable model with parametric 
global deformations which varied locally to capture the heart motion. Rather 
than model the tag surfaces, tag planes were assumed to translate without bend- 
ing in the through-plane direction from frame to frame. O'Donnell et al. [10],[11] 
described a deformable model with both global and local components of motion. 
Deformation parameters were fitted to a priori contour and stripe data. The 3D 
displacements of the stripe data were reconstructed by estimating the motion 
from each deformed frame back to the first frame (ED), as in [4]. Denney [14] 
described a stripe tracking procedure which did not require prior knowledge of 
the inner and outer contours of the heart. An active contour model was used 
to track stripes across an entire region of interest and a maximum a posteriori 
hypothesis test was used to segment myocardial tag stripes from background. 
Such contour-free stripe data could be used as input to model- free motion re- 
construction methods such as the method developed by Denney and McVeigh 
[12], or that of Kerwin and Prince [20]. These methods do not require the prior 
formation of a geometric model; however regional analysis of material strains 
requires further processing. 
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A p p e n d i x :  M i n i m i z a t i o n  A l g o r i t h m  

A Levenburg-Marquardt algorithm [21] was used to minimize eqn. (2), as done 
previously for RV surface models [15]. The objective function eqn. (2) can be 
written: 

E = I[SQ]I 2 + IlJq - Pl] 2 (4) 

where S is a matrix derived from the smoothing term, J is a matrix containing 
model basis functions evaluated at ~n and weighted by the tag normais, p is 
a vector containing components of xn weighted by the tag normals and q is a 
vector of model parameters. Note that J varies with q, but S does not. 

The Newton method minimizes E by neglecting terms higher than second 
order in the Taylor series expansion, giving the following iteration: 

Hk(qk+l -  q k ) : -  (9E0q k (5) 

where H is the Hessian matrix of second derivatives of E. The right hand side of 
eqn. (5) has a component due to the fact that ~n can change with q. However, 
the error function eqn. (2) measures the squared distance from each data point 
to the model position ~n in the direction approximately perpendicular to the 
model tag surface. Since ~n can only change within the model tag surface, the 
contribution to the first derivative of the error function due to changes in model 
position will be small. We therefore use the linear approximation: 

0E  : STSq + j T j q  _ jTp (6) 
0q 

Replacing the Hessian H with the linear approximation sTs + jTj ,  and adding 
a term A I ( A  > 0) to avoid non-positive definite H, gives the iteration: 

(sTs + JTJk + AI)qk  + 1 = A I  + jTp (7) 

If A is large the step becomes small and in the direction of steepest descent; 
if A is small the update becomes a full Gauss-Newton step. In practice, all the 
iterations were performed with A = 0, equivalent to solving the linear problem 
that arises if the ~n are assumed to be constant over the step. 


