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Abstract .  3D reconstruction of arterial vessels from planar radiographs 
obtained at several angles around the object has gained increasing in- 
terest. The motivating application has been interventional angiography. 
In order to obtain a three-dimensional reconstruction from a C-arm 
mounted X-Ray Image Intensifier (XRII) traditionally the trajectory of 
the source and the detector system is characterized and the pixel size is 
estimated. The main use of the imaging geometry characterization is to 
provide a correct 3D-2D mapping between the 3D voxels to be recon- 
structed and the 2D pixels on the radiographic images. 
We propose using projection matrices directly in a voxel driven backpro- 
jection for the reconstruction as opposed to that of computing all the 
geometrical parameters, including the imaging parameters. We discuss 
the simplicity of the entire calibration-reconstruction process, and the 
fact that it makes the computation of the pixel size, source to detector 
distance, and other explicit imaging parameters unnecessary. 
A usual step in the reconstruction is sinogram weighting, in which the 
projections containing corresponding data from opposing directions have 
to be weighted before they are filtered and backprojected into the object 
space. The rotation angle of the C-arm is used in the sinogram weighting. 
This means that the C-arm motion parameters must be computed from 
projection matrices. The numerical instability associated with the de- 
composition of the projection matrices into intrinsic and extrinsic param- 
eters is discussed in the context. The paper then describes our method of 
computing motion parameters without matrix decomposition. Examples 
of the calibration results and the associated volume reconstruction are 
also shown. 

1 Background and Justification 

Interventional  angiography has mot iva ted  m a n y  research and development  work 
on 3D reconstruct ion of  arterial vessels f rom planar  radiographs  obta ined  at 
several angles around the subject .  The  endovascular  therapy of  subarachnoid  
aneurysms using detachable  Guglielmi coils is an applicat ion where an imaging  
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system with 3D-capabilities is very useful, [4]. The success of this intravascular 
procedure critically depends on the packing of the aneurysm. Coils projecting 
into parent vessels may cause thrombosis, while incomplete filling may lead to 
regrowth of the aneurysm. Other applications that  would benefit from the 3D 
capabilities are the t reatment  of carotid stenoses and high resolution bone imag- 
ing. 

In order to obtain a three-dimensional reconstruction from a C-arm mounted 
XRII traditionally the trajectory of the source and detector system is character- 
ized and the pixel size is computed. Variety of methods have been proposed in 
the literature to compute different sets of characterization parameters [15], [2], 
[4], [3]. Rouge et al. [15] use a non-linear minimization method to compute the 
position and orientation of the X-ray system relative to the world coordinate 
system, as well as the image center and scale, using a spiral phantom. Koppe 
et al. [2] use two consecutive calibration steps to compute 15 parameters ex- 
plicitly. These parameters are the source position, iso-center, focus parameters, 
position and orientation. The main use of the imaging geometry characteriza- 
tion is however to provide a correct 3D-2D mapping between the 3D voxels to 
be reconstructed and the 2D pixels on the radiographic images. We suggest a 
simple calibration procedure that  results in the 3D-2D mapping, as well as, the 
backprojection algorithm that  uses this mapping. As a result we avoid explicit 
computation of quantities such as pixel size, source to detector distance, and 
the scale factors due to image digitization. This makes the whole calibration- 
reconstruction process simple and accurate. An X-ray calibration phantom can 
be positioned around the head of the patient. This will only occupy a small por- 
tion of the X-ray image. The projection matrices are then easily computed. These 
matrices are then directly used for the back-projection. There is then no need 
for decomposing these matrices into different geometry and imaging parameters. 

If we use the projection matrices computed using an X-ray calibration phan- 
tom for 3D reconstruction, the result will be in the coordinate system attached to 
the calibration phantom. It is however important  to present the reconstructed 
volume in a coordinate frame that  is intuitive and natural for the clinicians. 
During the interventional procedures the C-arm is often moved in the cranial 
to caudal and LAO to RAO directions to find an opt imum view of the lesion. 
One of the main advantages of this 3D reconstruction is the off-line examination 
of the vessel tree in order to define an opt imum view. This will minimize the 
radiation exposure to the patient, as well as, the injection of contrast material. 
Another factor in interventional neuroradiology is the proper placement of the 
patient to target an organ or a lesion for imaging. An intuitive reference frame 
is needed for proper placement of patient prior to data  collection. 

The iso-eenter of the C-arm is a natural choice, and the effective (average) 
rotation axis of the gantry is also a natural way to describe a principle axis in the 
equipment coordinate frame. Therefore, the 3D reconstruction must be presented 
in this coordinate frame. The matrices mapping 3D voxels to 2D projections 
must now map the voxels from the C-arm coordinate frame to the projection 
plane. This makes it necessary to compute the motion of the C-arm. Due to 
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numerical instabilities of matrix decomposition, it is desired to compute this 
motion directly without matrix decomposition. This is done quite accurately, 
and new mathematical formulation for the use of Quaternion representation is 
introduced [12]. 

We show that parameters such as X-ray source position and intra-frame 
motion of the imaging system can be computed without the decomposition of 
the projection matrix. A series of X-ray source positions result in a mean iso- 
center and a mean axis of rotation. This helps define an intuitive coordinate 
system at the iso-center of the C-arm. The mean axis of rotation defines one of 
the principle axes. 

The only assumption made is that the intrinsic parameters do not vary be- 
tween two consecutive frames. Due to small angular motion of the C-arm and the 
normalization done through distortion correction process[10, 5], this assumption 
is in practice always satisfied. 

We suppose that the image intensifier is free of distortion effect. This is in our 
application done through an off-line distortion characterization and an on-line 
distortion correction. The coming generation of X-ray angiography systems use 
solid state detectors. These detectors are free of geometric distortion, so in the 
future the distortion correction step will be unnecessary. 

2 D e f i n i t i o n  o f  P r o j e c t i o n  G e o m e t r y  

The 3D-2D mapping is represented by P a 3 x 4 homogeneous matrix of pro- 
jection. This matrix can be computed by imaging a known phantom and es- 
tablishing correspondences between feature points on the phantom and their 
radiographic image. The projection matrix P is defined up to a scale factor. 
This matrix represents all the imaging geometry parameters. These parameters 
can be divided into two sets. The first set is called the extrinsic parameters. 
These parameters define the position and orientation of the imaging system in a 
world coordinate system, e. g. the coordinate system associated with the calibra- 
tion phantom. The second set of parameters is called the intrinsic parameters. 
These parameters only depend on internal parameters of our radiographic imag- 
ing system such as pixel size, image center, and source to detector distance. 

The imaging system is modeled after a simple pinhole camera. This model 
proves to be sufficiently accurate for this application. A C-arm coordinate system 
is defined with its origin at the X-ray source. We define the z-axis parallel to the 
normal dropping from X-ray source onto the image plane. The x-axis and y-axis 
are parallel to the row and column vectors of the 2D detector plane. 

The homogeneous matrix P maps voxels from the C-arm coordinate frame 
to the image plane. We have: 

where A i "  0 uo ] C~v ~)0 �9 

0 1 

P ~ JAR AT] (1) 
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Fig. I. Mapping between different coordinate systems 

The symbol ~ is used to emphasize that the equality is in homogeneous co- 
ordinates and therefore up to scale. The parameters defining R, and T are called 
the extrinsic parameters. The matrix A incorporates scaling along the horizontal 
and vertical directions. It also incorporates shifting of the coordinate center from 
the image center (intersection of optical axis with the image plane) to any arbi- 
trary point on the image. The parameters a~ and ~ also incorporate in them 
any horizontal and vertical scale changes due to the digitization process. They 
also include the changes due to the increase or decrease of the relative distance 
between source and detector. It is important to note that the matrix P relates 
every 3D point in the world coordinate frame to a pixel in the image. Figure 1 
illustrates the imaging process including: (a) going from a point in the world 
coordinate system (Xw, Y~, Z~o) to a C-arm coordinate system (Xc, Yc, Zc), (b) 
perspective projection onto the detector plane, and (c) the digitization process 
and change of the coordinate center to an arbitrary point (upper left corner). 

In the traditional computed tomography reconstruction, the motion of the 
C-arm, the relation between the X-ray source and the image intensifier, and 
the pixel size are computed in different steps. These quantities are later used 
in the mathematical formulation of the back-projection geometry, from image 
coordinates in pixels to 3D coordinates in voxels (for example, in millimeters). 
Here we directly compute the projection matrix P. This can be done simply by 
solving the homogeneous linear system of equations: 

:~i -~ P:~i (2) 

where xi = [ui, vi, 1] and Xi = [xi, Yi, zi, 1] are the homogeneous coordinates of 
the image pixel and 3D voxel in the canonical homogeneous coordinate system. 

3 Direct  C o m p u t a t i o n  of  C-Arm Mot ion  

We first show that during the motion of the C-arm, the consecutive positions of 
the X-ray source C = - R t T ,  in the world coordinate system can be computed 
without decomposing the projection matrix P. 
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Let us define the 3 • 3 matrix Pla and the 3-D vector p4 s u c h  that  P = 
[P13 P4]. Using Eq. 1, we have P13 = A R  and P4 = AT. We have therefore: 

--1 P13 P4 : R - 1 T .  Matrix R is a rotation matrix and therefore R t R -1, 
We can then compute the position of the X-ray source C without decompos- 

ing the matrix P. We have: 

C ~  - 1  --P13 P4 (3) 

In order to estimate the motion of the C-arm from projection matrices Pi ,  
the classical method [9, 7, 6] is to decompose each projection matrix into intrinsic 
and extrinsic parameters. If p i  and PJ are the projection matrices obtained at 
two arbitrary positions of the C-arm, the inter-frame motion is then computed: 

p i  ~ [AiRi AiT~] 
PJ -~ [AjRj  A jT j ]  

R(,,j) = aTa  
= aT(T  - 

If the imaging parameters stay constant during the C-arm motion, we show 
that the motion of the C-arm can also be computed without the decomposition 
of the projection matrices. The motion of the C-arm (R(i,j), T(ij)), and the two 
projection matrices, p i  and PJ, satisfy the following equation: 

The C-arm motion is therefore directly computable, [3]: 

. _ i - t  j and p~3-1(t~p~ p~) (5) R(i,j) -- r~lJ13 P13 T(i,j) = 

We may solve this system of equations by first solving for the scale factor x. 
The orthogonality of the rotation matrix can be used to write: 

p~aP~3 T = x2p~3P~3 T (6) 

This results in a least square estimation of ~. A first estimation of the rotation 
matrix l&/j can be then computed from equation 5. This may not, however, be an 
orthogonal matrix. A method for finding the corresponding orthogonal matrix 
is proposed in the literature. This method finds the orthogonal matrix R as a 
result of the following minimization [6], [11]: 

MinR Z [I R v i  - ei I[ (7) 
i=1. .3  

where ei is the ith column of the identity matrix, and vi is the ith column of 
the matrix 1~ T. 
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This minimization is usually done using the Quaternion representation of the 
rotation [16], [11]. Once the scale factor ~ and then the rotation matr ix  l~ j  are 
computed, the translation Tij can be estimated from Eq.5. 

We, however, propose a new method for computing the motion and the scale 
parameter from Eq.5. This method gives more accurate results compared to the 
two previous methods. The basic idea is to first compute the rotation matr ix 
R(i,j), followed by the computation of the translation T(i,j) and the scale factor 

We also use the Quaternion representation of the rotation matrices in order 
to reduce the number of unknowns and get accurate results. The Quaternion has 
been used in the past to solve problems of the form R u  = u' ,  where u and u I are 
unit vectors. Here the problem is that  the unknown scalar ~ makes our equations 
of the form: R v  = gv I. One possible solution is to normalize the vectors and 
write these equations in the standard form. We, however, propose a method to 
use the Quaternion representation to accurately compute the rotation matr ix  
R,  by directly solving equations of the form R v  = nv' .  The results are more 
accurate than the standard minimization after normalization. This is based on 
a new finding on the Quaternion formulation presented in [12]. 

Our method of computing the rotation, followed by scale and translation is 
compared with computing scale first, followed by rotation and translation. Sim- 
ulations and experiments with real da ta  show that  more accuracy is obtained 
using our method. Figure 2 shows the error in estimating the rotational angle. 
A number of 3D points from our calibration phantom are projected onto two 
images using two projection matrices taken from a real experiment. Gaussian 
noise is then added to the coordinates of each projected point. At each noise 
level one thousand pairs of images have been automatically generated. The pro- 
jection matrices and the motion parameters are then computed. Figure 2 shows 
the behavior of error for the following three methods: (a) decomposition of the 
projection matrix, (b) direct computat ion of scale, followed by rotation and 
translation, and (c) our direct estimation of rotation first, followed by scale and 
translation. The decomposition of the projection matrices results in the worst 
estimation of the angular motion. The direct method proposed in [12] results in 
higher accuracy, particularly when increasing the noise level. 

3.1 C o m p u t a t i o n  o f  C - A r m  C o o r d i n a t e  F r a m e  

It is very important  to establish an intuitive and natural coordinate frame within 
which the reconstructed volume can be presented. It was mentioned earlier that  
the C-arm gantry is a good frame of reference. Therefore, it is necessary to 
compute the X-ray source position position for each projection. This source 
position is assumed to move in a quasi-circular orbit. In this section we define 
an effective iso-center and axis of rotation for this orbit. Tha t  would be sufficient 
to establish the desired coordinate frame. 

Once the rotations between all consecutive frames are estimated, we can 
compute the axis ri and the angle Oi of each rotational motion. These angles 
are later used in sinogram weighting[13]. Sinogram weighting means that  the 
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Fig. 2. The error in the estimation of angle of rotational motion from projection matri- 
ces: a) by decomposing the projection matrix, b) direct computation of scale, followed 
by rotation and translation, c) our direct estimation of rotation, followed by scale and 
translation. 

projections containing corresponding da ta  from opposing directions have to be 
weighted before they are filtered and backprojected into the object space. 

We also need to compute  the average axis of rotation. If  there are n frames, 
the average axis of rotation is: 

n - 1  
1 

r -  - Z ri  (8) n 1 

where ri is the axis of rotational motion between two consecutive frames i and 
i + 1 .  

The approximate  motion of the system is then a sequence of pure rotational 
motion around the axis of rotation r. In order to find the best candidate for an 
iso-center, we fit a cylinder, parallel to the axis of rotation, to all X-ray source 
positions Ci, i = 1..n. Next, we fit a plane orthogonal to the axis of rotation r 
to all the X-ray source positions Ci,  i = 1..n. The intersection of this plane with 
the cylinder axis is the est imated iso-center. 

We now represent the projection matrices, computed in the unintuitive co- 
ordinate system of the calibration phantom,  in an intuitive coordinate system 
with its origin at the effective iso-center and one of its coordinate axis along the 
average axis of rotation. Note, that  this is purely a change of coordinate systems 
and introduces no additional errors. 
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Fig. 3. Physical parameters traditionally used in the backprojection step of 3D cone 
beam reconstruction. 

4 3D Reconstruction Using Projection Matrices for 
Back-Projection 

CT reconstruction using two dimensional detectors are commonly referred to 
as cone-beam reconstruction techniques. In 1984 Feldkamp et. al. , [8], proposed 
an approx ima te  3D reconstruction algorithm which has been widely accepted. 
For an overview of exact  cone beam reconstruction, refer to the work of Clack 
and Defrise, [1], and the work of Smith, [14]. Feldkamp reconstruction technique 
could be considered as a generalization of the 2D fan beam reconstruction ex- 
tended to the third dimension. This method is based on filtered-backprojection. 
Stated very concisely, in this method, all the 2D projection images are filtered, 
backprojected into the volume and combined to form the volume data. Filtered- 
backprojection-type techniques including Feldkamp reconstruction have been de- 
veloped in the community of CT specialists, therefore different implementations 
have been greatly influenced by the existing tradition. In this tradition physical 
parameters of the system are used in the backprojection. For the cone beam 
reconstruction these parameters are illustrated in Figure 3. s is the X-ray source 
that  is moving on an orbit around the center of rotation O. d is  a vector con- 
necting the center of rotation to the origin of the two dimensional detector, r 
and c are two unit vectors signifying the orientation of the orthogonal axes on 
the detector plane. A principle step of Filtered-backprojection-type cone beam 
reconstruction algorithms is backprojection. This consists of tracing a ray from 
each pixel on the image intensifier back to the X-ray source in order to mark all 
the 3D voxels which have contributed to this projection. 

In this paper we are interested in a voxel oriented approach to backprojec- 
tion. This approach involves tracing a ray from the X-ray source to a voxel and 
continued until it intersects the image intensifier at point, marking the point by 
which the voxel is affected during the backprojection step. The computed tomog- 
raphy community is accustomed to using individual parameters of the geometry 
for backprojection. These parameters are computed at different calibration steps. 
We have designed a calibration apparatus and software that  provides a transfor- 
mation matr ix  relating each voxel in the world coordinate system to a point in 
the image. This matr ix  incorporates all the physical parameters involved in the 
3-D to 2-D projection. These are the parameters that  have been traditionally 
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used in the backprojection step. We have successfully used the transformation 
matr ix  in the backprojection step directly, without the need to know the indi- 
vidual physical parameters. This approach is helpful in the following ways: 

1. Eliminating the need for running separate calibration steps to compute dif- 
ferent physical parameters. 

2. Finding a mapping between the voxels to the pixels in the image plane, 
thereby, eliminating the effect of scale and shift caused by the image digiti- 
zation process. 

3. Providing a more accurate backprojection by computing all the parameters 
at once, keeping the overall projection error at a minimum (in a least squared 
sense). 

4. Formulating a voxel driven backprojection method based on homogeneous 
transformation matrices results in an elegant and efficient algorithm. 

5 R e s u l t s  

The 3D calibration and reconstruction results presented here have been obtained 
from prototype installations at four medical and university sites. The prototype 
system encompasses additional components not discussed in this paper. The ge- 
ometry of the rotational angiography imaging system, a Siemens NEUROSTAR 
T.O.P, has been found to be reproducible. The calibration results have remained 
stable for over a period of more than four months. In an off-line process a calibra- 
tion phantom has been positioned on the operating table, and a set radiographic 
images has been taken. The Pose Determination Software (PDS) has automat-  
ically made the 3D-2D correspondences between the makers on the calibration 
ring and their radiographic images. The PDS has then computed the projection 
matrices, the iso-center, and the inter-frame motions as described in the pre- 
vious sections. The projection matrices are then transformed into the intuitive 
coordinate system with its origin at the estimated iso-center as described in the 
paper. 

During the reconstruction of the patient data, only these projection matrices 
have been used for the back-projection process. The pixel size, image center and 
source to detector distances have neither been computed nor used during the 
calibration and reconstruction process. 

Typical parameters for the prototype runs are as follows: The exposure was 
performed over a total angle of 200 degrees in 5 seconds, LAO to RAO; the 
injection rate of the contrast agent was 2.5 cc/s, for a total of about 14 cc, with 
contrast agent being iodine (80 to 100%); the XRII format  was either 22 or 33 
cm (9 or 13"), the dosage at the XRII entrance was one of two settings, 0.48 or 
1.2 #Gy (55 or 140 #R).  The dosage is about ten times lower than that  for CT. 
However, the primary limitation of the system is not from the noise but from 
the low number of projections which limits the image quality. The contrast is 
good since the Hounsfield units are markedly above those of bone, (from 2000 to 
6000 HU) due to the arterial injection of contrast agent. However, for the case of 
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Fig. 4. Shaded-surface display image of a reconstructed volume of a human patient. 

CT-Angio with venous injection, the Hounsfield units are between 200 and 300 
HU only. The spatial resolution is approximately 0.2 mm "isotropic". A typical 
reconstruction volume is 256 x 256 • 256, sometimes 512 x 512 x 256 with voxel 
resolution being somewhere in between 0.1 to 0.3 mm. 

Figure 4 shows a portion of the shaded-surface display image of a 3D recon- 
structed volume from patient data. 

6 C o n c l u s i o n s  

A simple calibration and back-projection algorithm was described using pro- 
jection matrices directly in a voxel driven backprojection for the reconstruc- 
tion as opposed to that  of computing all the geometrical parameters, including 
the imaging parameters. We discussed the simplicity of the entire calibration- 
reconstruction process, and the fact that  it makes the computat ion of the pixel 
size, source to detector distance, and other explicit imaging parameters unnec- 
essary. A robust motion estimation scheme was proposed in order to compute 
the motion of the C-arm and recover the average iso-center and axis of rota- 
tion, without decomposing the projection matrices into different geometric and 
imaging parameters. The whole process becomes therefore quite simple. For a 
reproducible system, such as the NEUROSTAR T.O.P, the calibration phan- 
tom is placed and the projection matrices are computed for an exposure over 
a total angle of 200 degrees. This is done once every few months. For a non 
reproducible system the projection matrices can be computed using the patient 
run. The calibration ring designed to only cover a small portion of the image in 
this case, and does not interfere with the region of interest. This projection ma- 
trices are then directly used during the back-projection process. This calibration 
and reconstruction process was tested on the results obtained from prototype 
installation on medical sites, and the results are quite satisfactory. 
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