Abstract
Coronary angiography delivers accurate information about the vessel topology and shape, but only limited data concerning the vessel cross-section. Intravascular ultrasound provides detailed information about the cross-sectional shape as well as the composition of vessel wall and plaque, but fails to consider the geometric relationships between adjacent images. In this paper, we present a new approach for combination of both methods to allow accurate assessment of coronary arteries regarding both longitudinal and cross-sectional dimensions.
Chapter PDF
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Kirkeeide R. L., Fung P., Smalling R. W., and Gould K. L., Automated evaluation of vessel diameter from arteriograms, in: Proc. Computers in Cardiology 1982, Seattle WA. IEEE-CS Press, Los Alamitos CA (1982) 215–218.
Beier J., Oswald H., Sauer H. U., and Fleck E., Accuracy of measurement in quantitative coronary angiography (QCA), in: Lemke H. U., Rhodes M. L., Jaffe C. C., and Felix R. (eds.), Computer Assisted Radiology (CAR ’91). Springer, Berlin/New York (1991) 721–726.
Sonka M., Winniford M. D., and Collins S. M., Robust simultaneous detection of coronary borders in complex images. IEEE Transactions on Medical Imaging 14 (1995) 151–161.
Guggenheim N., Doriot P. A., Dorsaz P. A., Descouts P., and Rutishauser W., Spatial reconstruction of coronary arteries from angiographic images. Physics in Medicine and Biology 36 (1991) 99–110.
Seiler C., Kirkeeide R. L., and Gould K. L., Basic structure-function relations of the epicardial coronary vascular tree; basis of quantitative coronary arteriography for diffuse coronary artery disease. Circulation 85 (1992) 1987–2003.
Wahle A., Wellnhofer E., Mugaragu I., Sauer H. U., Oswald H., and Fleck E., Assessment of diffuse coronary artery disease by quantitative analysis of coronary morphology based upon 3-D reconstruction from biplane angiograms. IEEE Transactions on Medical Imaging 14 (1995) 230–241.
Sonka M., Zhang X., Siebes M., Bissing M. S., DeJong S. C., Collins S. M., and McKay C. R., Segmentation of intravascular ultrasound images: A knowledge-based approach. IEEE Transactions on Medical Imaging 14 (1995) 719–732.
Dijkstra J., Wahle A., Koning G., Reiber J. H. C., and Sonka M., Quantitative coronary ultrasound: State of the art, in: Reiber J. H. C. and van der Wall E. E. (eds.), What’s New in Cardiovascular Imaging? Vol. 204 of Developments in Cardiovascular Medicine, Kluwer, Dordrecht (1998) 79–94.
Sonka M. and Zhang X., Assessment of plaque composition using intravascular ultrasound; in: Reiber J. H. C. and van der Wall E. E. (eds.), What’s New in Cardiovascular Imaging? Vol. 204 of Developments in Cardiovascular Medicine, Kluwer, Dordrecht (1998) 183–196.
Laban M., Oomen J. A., Slager C. J., Wentzel J. J., Krams R., Schuurbiers J. C. H., den Boer A., von Birgelen C., Serruys P. W., and de Feyter P. J., ANGUS: A new approach to three-dimensional reconstruction of coronary vessels by combined use of angiography and intravascular ultrasound, in: Proc. Computers in Cardiology 1995, Vienna AT. IEEE Press, Piscataway NJ (1995) 325–328.
Evans J. L., Ng K. H., Wiet S. G., Vonesh M. J., Burns W. B., Radvany M. G., Kane B. J., Davidson C. J., Roth S. I., Kramer B. L., Meyers S. N., and McPherson D. D., Accurate three-dimensional reconstruction of intravascular ultrasound data; spatially correct three-dimensional reconstructions. Circulation 93 (1996) 567–576.
Prause G. P. M., DeJong S. C., McKay C. R., and Sonka M., Towards a geometrically correct 3-D reconstruction of tortuous coronary arteries based on biplane angiography and intravascular ultrasound. International Journal of Cardiac Imaging 13 (1997) 451–462.
Prause G. P. M., DeJong S. C., McKay C. R., and Sonka M., Semi-automated segmentation and 3-D reconstruction of coronary trees: Biplane angiography and intravascular ultrasound data fusion, in: Proc. Medical Imaging 1996: Physiology and Function from Multidimensional Images, Newport Beach CA. Vol. 2709, SPIE, Bellingham WA (1996) 82–92.
Molina C., Prause G. P. M., Radeva P., and Sonka M., 3-D catheter path reconstruction from biplane angiograms, in: Proc. Medical Imaging 1998: Image Processing, San Diego CA. Vol. 3338, SPIE, Bellingham WA (1998) 504–512.
Wahle A., Präzise dreidimensionale Rekonstruktion von Gefä\systemen aus biplanen angiographischen Projektionen und deren klinische Anwendung. No. 152 in Fortschritt-Berichte, Reihe Biotechnik (17), VDI Verlag, Düsseldorf (1997).
Parker D. L., Pope D. L., van Bree R. E., and Marshall H. W., Three-dimensional reconstruction of moving arterial beds from digital subtraction angiography. Computers and Biomedical Research 20 (1987) 166–185.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wahle, A., Prause, G.P.M., DeJong, S.C., Sonka, M. (1998). 3-D fusion of biplane angiography and intravascular ultrasound for accurate visualization and volumetry. In: Wells, W.M., Colchester, A., Delp, S. (eds) Medical Image Computing and Computer-Assisted Intervention — MICCAI’98. MICCAI 1998. Lecture Notes in Computer Science, vol 1496. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0056197
Download citation
DOI: https://doi.org/10.1007/BFb0056197
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-65136-9
Online ISBN: 978-3-540-49563-5
eBook Packages: Springer Book Archive