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Abstract. A novel image segmentation algorithm was developed to allow the 
automatic segmentation of both normal and abnormal anatomy. The new algo- 
rithm is a form of spatially varying classification (SVC), in which an explicit 
anatomical template is used to moderate the segmentation obtained by k Nearest 
Neighbour (k-NN) statistical classification. The new algorithm consists of an iter- 
ated sequence of spatially varying classification and nonlinear registration, which 
creates an adaptive, template moderated (ATM), spatially varying classification 
(SVC). 
The ATM SVC algorithm was applied to several segmentation problems, involv- 
ing different types of imaging and different locations in the body. Segmentation 
and validation experiments were carried out tbr problems involving the quantifi- 
cation of normal anatomy (MRI of brains of babies, MRI of knee cartilage of 
normal volunteers) and pathology of various types (MRI of patients with multi- 
ple sclerosis, MRI of patients with brain tumours, MRI of patients with damaged 
knee cartilage). In each case, the ATM SVC algorithm provided a better segmen- 
tation than statistical classification or elastic matching alone. 
Keyword~: template moderated segmentation, elastic matching, nearest neighbour 
classification, knee cartilage, neonate, brain, tumour 

1 Introduction 

The segmentation of structures or types of  tissue from medical images is still a difficult 
problem. In particular, the segmentation of pathology often requires intensive manual 
interaction to achieve good, or even acceptable, segmentations. Our goal was to develop 
a generally applicable segmentation algorithm that could aid in the automation of medi- 
cal image analysis tasks by successfully segmenting both normal anatomy and common 
types of  pathology. 

A strategy of feature detection and classification (spectral segmentation) has been 
widely used for the identification of tissue types. When spatial information (such as 
shape and spatial relationships between structures) is significant, a variety of deformable 
models have been proposed. Some segmentation problems can be solved simply by fea- 
ture identification and classification. In this case, there is no need to make use of  an 
anatomical template, and the segmentation is a straightforward process. Similarly, some 
segmentation problems can be solved by matching deformable models directly to the 
image data [1, 2, 3]. Here we deal with those segmentation problems for which feature 
identification and classification, or matching deformable models alone, are insufficient. 
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These different segmentation strategies are often complementary, both in the tasks 
where they succeed and in the tasks where the fail. For example, classification is of- 
ten successfully applied for the global segmentation of major tissue types. Deformable 
models have been successfully applied to the localization of particular anatomical struc- 
tures. Tissue classification is unsuccessful when different structures to be identified have 
the same or overlapping spectral properties. Deformable models often need accurate ini- 
tialization and are usually optimized for particular structures (sometimes with a single 
closed boundary), and can fail in the presence of abnormal anatomical variability (or 
even in the presence of normal but highly variable structures, such as the cortex). Op- 
timization strategies have usually been driven by local gradient information which is 
often insufficient to distinguish particular structures of interest. 

We developed a new algorithm, ATM SVC, by embedding a traditional multiple 
feature k-NN classification into a higher dimensionality problem space. The additional 
dimensionality is derived from an anatomical template, and acts to moderate the statis- 
tical classification. In the special case of the classification problem involving separable 
classes with nonoverlapping anatomy accurately described by the anatomical model, 
the ATM SVC solution is the same as the original k-NN classification problem. In the 
common case involving some spectral overlap, the ATM SVC resolves the ambiguity 
of the feature space with anatomical context. 

ATM SVC integrates an individualized explicit anatomical model with statistical 
classification. This allows the generation of a spatially varying classification, so that 
spectral overlap can be remedied through spatial information. In turn this generates 
a classification of the data which is a more reliable and robust source of information 
than the raw imaging data for the fast nonlinear registration to operate upon, allowing 
more accurate nonlinear registration than is possible from greyscale image data alone. 
By iterating these steps, we have found it possible to segment normal and abnormal 
anatomy from a range of locations in the body. 

2 Method  

Our algorithm iterates between a classification step to identify tissues and an elastic 
matching step to align a template of normal anatomy with the classified tissues. The 
template of anatomy is used to modify the classification to produce a spatially varying, 
rather than global, classification. The steps are iterated to improve the final segmenta- 
tion. Figure 1 illustrates the ATM SVC algorithm. 

2.1 The ATM SVC algorithm 

When we come to segment a particular patient, several steps are involved in the ini- 
tialization of data for the algorithm. We choose to represent normal anatomy with a 
3D volumetric digital template. The template consists of a 3D volume with each voxel 
labelled according to the anatomical structure present [4]. Initialization involves the 
application of feature detection or image enhancement algorithms to construct images 
that have improved contrasts for the structures of interest (e.g. nonlinear diffusion for 
noise smoothing [5], local structure enhancement), the execution of an initial alignment 



433 

Tissue class prototypes - - ~  _ _ i  
F 

Anatomical template ~/ Elastic matching 
L 

k kNN classification ~ ~  Segmentation 

Fig. 1. Schema for Adaptive Template Moderated Spatially Varying Classification. Initialization 
consists of image acquisition, tissue class prototype selection and linear registration ofa template 
of normal anatomy to the image data. Feature identification is problem dependent and often the 
image data alone is used. Local filtering strategies for feature enhancement can be motivated by 
the anatomical template. The anatomical template is converted into a set of features describing 
anatomical localization with a distance transform. A segmentation based upon these features is 
done with k-NN classification. The segmentation is then put through a feedback path that is 
used to refine the segmentation. A fast elastic matching algorithm is used to refine the alignment 
of the template of normal anatomy to the classified patient data. The anatomical localization is 
recomputed with the refined atlas, and the process is iterated. 

strategy to align the template to the patient scan, and the selection of prototype vox- 
els for tissue classes of interest to allow the construction of a statistical model for the 
distribution of features for each tissue class. 

The initial alignment strategy depends upon whether the anatomy to be aligned is 
rigid or piecewise rigid, and examples are presented in Section 3. For brain MR, the 
usual rigid registration techniques are suitable, and we have used volumetric alignment 
of  classified data sets [6]. For the knee joint, we use a piecewise rigid registration by 
manual alignment of  each of the bones. 

Spatially Varying Classification The k-Nearest Neighbour (k-NN) classification rule is 
a technique for nonparametric supervised pattern classification. Efficient techniques for 
k-NN classification have been developed [7, 8, 9]. Distance is measured with a distance 
metric appropriate to the problem domain. The main characteristic of the ATM SVC 
algorithm is to use Euclidean distance in a modified feature space. 

We have a template aligned with the data. If  this template was precisely aligned and 
modelled all of  the structures present (including pathology) there would be no need for 
further segmentation. We would just use the model directly. However, the initial align- 
ment of  the template captures only global scale, rotation and translation parameters, 
and local shape differences remain. The relevant local shape differences may require 
more than one iteration of elastic matching to capture, particularly in the presence of 
pathology that distorts the patient anatomy significantly away from the normal anatomy 
of the template. 

In order to improve the segmentation, we make use of the approximately aligned 
template to create a spatially varying classification. The template is used to provide 
anatomical localization for the classification. We can consider a range of confidence in 
our anatomical localization, ranging from the regions we have reason to suspect are far 
away from the anatomical structure, to those regions we suspect are very likely to be 
the anatomical structure. The nature of the misalignment of  the nonlinear registration 
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makes our confidence in the anatomical localization weakest at the boundary of the 
model. A potential distance metric is: 

M D 

e2=  (vo--Pa) 2 + 
a = l  f : l  

where we have added M features of spatial information to the usual D features, and 
( V a  - -  Pa) 2 represents the difference in anatomical localization of the voxel to be classi- 
fied and the prototype. Qualitatively, when v and p are from the same anatomical region, 
Va andpa will vary together, leading to a small addition (ideally zero) to the overall dis- 
tance, and so the distance will be mainly determined by the original features. When v 
and p are from different anatomical regions, va and Pa will vary differently, leading to a 
large change to the overall distance, causing the distance to be large irrespective of  the 
values of  the original features. 

We generate anatomical localization features by converting each of the structures 
of an aligned template into a distance map. We model the uncertainty of  anatomical 
localization, which depends upon the size of  the potential error in elastic matching. 
A straightforward model of error is to use a penalty of 0 where labels for the matched 
structure is present, and increase the penalty linearly or quadratically with distance from 
the anatomical template until saturating it. When better error bounds on the anatomical 
localization are known, they can be directly incorporated by modifying the penalty in 
the relevant regions. 

Nonlinear Registration We achieve fast nonlinear registration with an elastic matching 
algorithm based upon that of Dengler [ 10]. The goal of the matcher is, given a source 
data set 91(x) and a target data set 9z (x), to find a deformation vector field u(x)  such 
that the function 91 (x - u (x ) )  is as similar to the function 92(X) as possible. 

The basic method of computing u is: for a fixed value of x, consider the problem of  
finding the value o f u  that minimizes 

E x(u) = / w ( x t  - x) (g2(x ' )  - g l (x t  - u) )2dx  '. 

The resulting value of u is taken as the value of u(z ) .  Here, w is a window function 
whose width determines the size of  the region used to compute u(x). 

We compute a classification, and use the classification to update the template align- 
ment. The updated template is then used to generate a new anatomical localization 
and used to compute a new classification. For the segmentation problems described in 
Section 3, the algorithm converges to a satisfactory segmentation around five or fewer 
iterations of this process. 

2.2 Summary 

The ATM SVC algorithm generates a sequence of segmentations s (j) given both a 
(multi-modality) data set 9 and an anatomical template t. The classification of a par- 
ticular voxel v from a set of training prototypes P with classes wi, i C 1..C for C 
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classes, is determined with a modified k-NN estimate P(wi[v) - #~ 

�9 k~ j )  
8 (3+1) (V) = maxi P(j) (wil v) = max. k-~  = maxi - -  •N(J) V , W i  

#N~ j) 

Nv is the subset of prototypes (drawn from the set of training prototypes P),  with 
distance less than or equal to the distance to the kth nearest prototype, dk. The ATM 
SVC algorithm differs from the usual k-NN classification by modifying the set of k 
nearest prototypes, at each iteration, in a manner that depends upon the anatomical 
template. The usual distance metric is extended to be 

D 

N~)  = {p ~ P :  d~ > ~ ( v f  - pl)  2 + 
f = l  

M 

~ ( . , ( t ( J )  (vo)) - ,~(t(~)(po)))'~ ) , 
a = l  

where Nv,w~ is the subset of Nv which consists of prototypes of class wi, and # is the 
cardinality operator for counting the number of elements in a set, D is the dimensional- 
ity of the feature space derived from g, M is the number of spatial localization features 
derived from the anatomical template, m(t  (j) (va)) is the saturated distance transform 
of structure a of the anatomical template t (j) at voxel v, and 

t IJ)(v)  = t ( J -1 ) (v  - ~(~)(v))  

where u (i) (v) = u represents the nonlinear registration of the anatomical template 
t ( j- l)  to the data 9 and is obtained by minimizing the elastic matching constraint. 

3 Results 

In this section the application of ATM SVC to segmentation problems involving both 
normal anatomy and pathology is presented. For each of these problems, segmentation 
with a global (non-spatially varying) classification was also carried out (either k-NN 
classification [9] or the EM algorithm [11]) and a visual comparison was made. In 
each case the spatially varying classification generated by ATM SVC better reflects the 
underlying anatomy than global classification techniques. 

Classification of Cortical and Subcortical Grey Matter from MR of Neonates In the de- 
veloping brain rapid changes in the amount of cortical grey matter occur. These changes 
can be studied with MR imaging [12]. However, because the brain is still developing, 
the signal intensity characteristics of different parts of the brain can be quite similar, 
making it difficult to apply conventional classification techniques. 

We applied the ATM SVC algorithm to this problem with the goal of improving 
the segmentation of cortical grey matter and subcortical grey matter. These have similar 
intensity ranges, but different spatial locations, and accurate measurement of cortical 
grey matter is a clinically interesting problem. Figure 2 illustrates the improvement in 
the segmentation that is achieved with ATM SVC. 
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Fig. 2. MRI of baby brain, k-NN classification and ATM SVC segmentation. Cortical grey matter 
is shown in light grey, and subcortical grey matter is shown as white. The quantification of cortical 
grey matter is a clinically important problem, but it is difficult to distinguish from subcortical grey 
matter because of the similarity of MR intensity. The ATM SVC algorithm allows the spatial 
distribution of grey matter to be modelled, and as shown, generates an improved segmentation of 
cortical and subcortical grey matter over that of k-NN classification alone. 

Segmentation of Brain MR of Patients with Multiple Sclerosis White matter lesions 
appear in the brain o f  patients with multiple sclerosis and evolve over time. During 
the lifetime of  a lesion some parts o f  the lesion develop signal intensity characteristics 
that overlap those o f  normal grey matter on conventional spin echo MR images [13]. 
A conventional spin echo MR image was segmented using a statistical classification 
with intensity inhomogeneity correction using the EM segmentation method of  Wells 
et al. [11], and a spatially varying classification of  a slice from a brain MR scan of  a 
patient with multiple sclerosis. Comparison of  the segmentations indicated ATM SVC 
improved the segmentation o f  normal white matter, the lesions and the grey matter over 
that of  statistical classification alone. 

Brain TumourSegmentation A comparison of  manual and ATM SVC segmentation o f  a 
brain tumour was carried out. An SPGR MRI of  a patient was obtained and segmented 
with an interactive volume editing segmentation routine (requiring about 60 minutes 
o f  operator time). Independently, the SPGR MRI was segmented using ATM SVC (re- 
quiring about 5 minutes o f  operator time, for initial alignment o f  the template and for 
prototype selection). The results o f  the segmentations were very similar. On a voxel to 
voxel comparison the agreement was over 85%. The primary differences were due to 
over-smoothing of  the boundary of  the tumour in the manual segmentation. 

Segmentation of Knee Cartilage from MRI ATM SVC was compared with manual out- 
lining for the segmentation o f  knee cartilage from MRI of  a patient with a focal cartilage 
defect. ATM SVC provided a close match of  the cartilage segmentation to the cartilage 
seen in the MR, particularly in the region of  the defect [14]. A quantitative assessment 
was carried out and the use o f  the ATM SVC was found to greatly reduce the variability 
o f  the segmentation (Table 1). 
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Observer 1 2 ~3 I4  ATMSVC 
C.V. (%) 7.2 9.6[6.617.0 3.9 

Table 1. Coefficient of variation of volume of manual and ATM SVC femoral cartilage segmen- 
tation. Four experts segmented a single MR image with a single focal defect, 5 to 10 times on 
separate occasions over a period of one month. One of the experts also carried out repeated ini- 
tializations of the automatic segmentation, so the variability induced in the segmentation by di f- 
ferences in initialization could be determined. The volume of the femoral cartilage was recorded, 
and the coefficient of variation of the volume for each of the experts and the automatic segmen- 
tation is shown. The use of the ATM SVC was found to greatly reduce the variability of the 
segmentation. 

4 Discussion and Conclusion 

We have developed a new algorithm which is an adaptive template moderated spatially 
varying statistical classification. The examples presented in Section 3 demonstrate that 
ATM SVC can achieve better segmentations than either statistical classification or non- 
linear registration alone for the illustrated problems. These problems involve both nor- 
mal anatomy and also certain types of  pathology. The ATM SVC algorithm may fail 
when structures to be segmented have similar characteristics in all features and are also 
not spatially distinct. When the structures to be segmented have similar characteristics 
in all features the classification is strongly dependent upon the spatial localization that 
can be derived from the nonlinear registration (that is the point of  the ATM SVC al- 
gorithm). The classification is then strongly dependent upon the boundaries identified 
by elastic matching. If  the structures to be segmented have a boundary that cannot be 
discerned by elastic matching, the segmentation in the region of the boundary can be 
wrong, up to the size of  the error of the spatial localization. 

Related work has examined different types of adaptation in the classification prob- 
lem. The segmentation of tissue classes in the presence of intensity inhomogeneity and 
variation of intensity over time was the motivation for the development of  an adap- 
tive tissue classification algorithm by Wells et al. [ 1 1 ]. This method iteratively adapts a 
model of  intensity inhomogeneity to drive a tissue classification algorithm. This has the 
advantage of making it possible to classify patient scans without per-patient prototype 
selection. For the ATM SVC, we do per-patient training and iterate the c[assification 
with respect to an adaptive anatomical model, For the examples of  Section 3, we have 
found it unnecessary to explicitly include estimation of intensity inhomogeneity, al- 
though it would be straightforward to incorporate. 

An alternative modification to the usual classification model is to use a spatially 
varying a priori probability field. Kamber et al. [15] built a probabilistic spatially vary- 
ing a priori model which was successful at reducing the number of false positives in a 
lesion classification problem. However, this algorithm did not adapt the spatially vary- 
ing model to the particular patient being segmented and consequently was not able to 
reduce the number of  false negative lesion classifications. 
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