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Abstrac t .  In recent years, the quantitative analysis of MRI data has 
become a standard surrogate marker in clinical trials in multiple scle- 
rosis (MS). We have developed INSECT (Intensity Normalized Stereo- 
taxic Environment for Classification of Tissues), a fully automatic system 
aimed at the quantitative morphometric analysis of 3D MRI brain data 
sets. This paper describes the design and validation of INSECT in the 
context of a multi-center clinical trial in MS. It is shown that no statisti- 
cally significant differences exist between MS lesion load measurements 
obtained with INSECT and those obtained manually by trained human 
observers from seven different clinical centers. 

1 I n t r o d u c t i o n  

Although the use of magnetic resonance imaging (MRI) as a qualitative clini- 
cal diagnostic tool in the study of multiple sclerosis (MS) has been established 
for well over a decade, it is only in recent years that  its quantitative analysis 
is at tracting interest. This attention is driven by, among other things, the in- 
creased use of MRI as a surrogate marker in clinical trials aimed at establishing 
the efficacy of drug therapies [1, 11]. A landmark study in this respect was the 
interferon beta- lb  trial [15], which showed a correlation between MRI measured 
lesion load (quantified using manual boundary tracing) and clinical findings. This 
study clearly shows that  manual tracing can be used to measure MRI lesion load 
with sufficient accuracy to detect a clinical effect; however, the disadvantages of 
this method are that  it is very labour-intensive and that  it suffers from high 
intra- and interrater variabilities. 

A number of researchers have shown that  computer-aided techniques are able 
to not only reduce operator burden, but also the inter- and intrarater  variabil- 
ity associated with the measurement [5, 13, 26]. However, considering that  the 
amount of MRI data  to analyze in present-day clinical trials is often on the 
order of hundreds or thousands of scans, even minor manual involvement for 
each scan is an arduous task. The development of fully automatic analysis tech- 
niques is desirable to further reduce both the operator time requirements and 
the measurement variability. 
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At the McConnell Brain Imaging Centre (BIC), we have developed INSECT 
(Intensity Normalized Stereotaxic Environment for Classification of Tissues), a 
system aimed at the fully automatic quantification of tissue types in medical 
image data. This system has been used to automatically quantify MS lesion 
load in over 2000 MRI scans, acquired in the context of a large-scale, multi- 
center clinical trial [22]. Clearly, the thorough validation of results obtained using 
such an automated technique is crucial for its acceptance into clinical practice. 
Crucial elements of such validation studies are the assessment of accuracy and 
reproducibility. In the case of INSECT, results obtained on the same data are 
perfectly reproducible, which is a considerable advantage over manual lesion 
delineation. The fact that the analysis is reproducible does however not imply 
that its results are also accurate. The main focus of this paper is the validation 
of the accuracy of INSECT for the quantification of MS lesion load in MRI. 

2 M e t h o d s  

This section gives a brief overview of the INSECT processing pipeline, followed 
by a description of the validation studies performed to assess its accuracy for 
the automatic quantification of MS lesion load. 

2.1 Image  Processing 

Fig. 1 shows the general architecture of INSECT. The central module of this 
system is the registration of the data with, and resampling into, a standardized, 
stereotaxic brain space based on the Talairach atlas [2, 21]. The registration com- 
ponent is preceded by a number of preprocessing algorithms aimed at artifact 
reduction, and followed by postprocessing algorithms such as intensity normal- 
ization and tissue classification. Each of these image processing components is 
briefly described here. 
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Fig. 1. INSECT flow diagram. 

Inter-Slice Intensity Normalization: intensity variation between adjacent slices, 
an artifact generally attributed to eddy currents and crosstalk between slices, is 
a common problem in MRI [17, 24, 25]. INSECT employs a correction method in 
which the scaling factor between each pair of adjacent slices is estimated from 
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local (pixel-by-pixel) correction factors [25]. Intensity Non-Uniformity Correc- 
tion: low-frequency spatial intensity variations, predominantly caused by elec- 
trodynamic interactions with the subject and inhomogeneity of the RF receiver 
coil sensitivity [8, 17, 18], are a major source of errors in the computer-aided, 
quantitative analysis of MRI data. A number of researchers have proposed al- 
gorithms to correct for this type of artifact [3, 10, 20, 23, 25]. INSECT employs 
a method developed in our institute [20], which was shown to be accurate and 
robust [19]. Noise Reduction: edge-preserving noise filters are often able to im- 
prove the accuracy and reliability of quantitative measurements obtained from 
MRI [12, 26]. INSECT relies on anisotropic diffusion, a filter commonly used 
for the reduction of noise in MRI [7, 16]. Stereotaxic Registration: this is ac- 
complished by the registration of one of the image modalities to a stereotaxic 
target, using an automated 3D image registration technique [2]. This method 
minimizes, in a multi-stage, multi-scale approach, an image similarity measure 
between these two volumes as a function of a 9 parameter (3 translations, 3 
rotations, 3 scales) linear geometric transformation. The stereotaxic target used 
at the BIC is an average Tl-weighted scan of 305 normal volunteers [2, 4, 6]. 
Inter-Sequence Registration: processing multi-modal (multi-feature) data typi- 
cally requires the individual data volumes to be in exact spatial register, i.e., the 
feature values obtained from each modality at a specific voxel location should all 
reflect the same location in physical brain space. Since patient motion between 
different acquisitions is common, all scans of a patient or subject are explicitly 
registered with each other using the same technique as described for stereotaxic 
registration, with parameter values tailored to, in particular, the registration of 
a T2-weighted scan to a Tl-weighted scan. Resampling: following stereotaxic and 
inter-scan registration, all data volumes are resampled onto the same voxel grid 
using trilinear interpolation. Masking of Non-Brain Voxels: for the application 
described herein, a standard brain mask, defined in stereotaxic space, is used. 
The fact that this 'average' brain mask may not accurately fit the individual 
brain does not affect the quantification of MS lesions, which are typically situated 
in the white matter well away from the cortical surface. Inter-Volume Intensity 
Normalization: given that all volumes at this stage are stereotaxically registered, 
they can be normalized using the same technique as described for the correction 
of inter-slice intensity variations (see [25]). In this case, a single, global intensity 
scale factor is estimated from the voxel-by-voxel comparison of each volume with 
a stereotaxic intensity model. Tissue Classification: for this application, INSECT 
employs a back-propagation artificial neural network (ANN) [26], which has been 
trained once to separate MS lesion from background (non-lesion). The classifier 
uses six input features, being the TI-, T2-, and PD weighted MRI volumes, as 
well as three (white matter, gray matter, CSF) SPAMs (Statistical Probability 
of Anatomy Maps), derived from normal human neuroanatomy (see [9]). 

In order to process mass amounts of data, INSECT allows the user to specify 
this type of processing 'pipeline' using a high-level script language. During exe- 
cution, each individual processing stage is submitted to a load-balancing queue, 
which distributes the job over a network of interconnected workstations. This 
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results in efficient mass-production using a high degree of (coarse-grain) paral- 
lelism. 

2.2 Val idat ion 

The accuracy of INSECT has been assessed by means of two validation studies, 
in which automatic results were compared against those obtained from trained 
observers. L Independent Validation: a total of 10 axial slice triplets (TI-, T2- 
and PD-weighted), each acquired from a different MS patient and at a differ- 
ent scanner, were selected from the data acquired for a multi-center clinical 
trial. Selection was such that the data reflect a reasonable range of lesion load 
and spatial distribution. The slices were extracted from data which was regis- 
tered with and resampled into the BIC standard Talairach lmm 3 isotropic brain 
space. These data were distributed to seven different institutes for evaluation 
(see the acknowledgements), with the specific request to manually label all MS 
lesion pixels in each image triplet and return the binary label maps to the BIC. 
II. BIC validation: MS lesions were identified, using manual tracing, by four 
raters from the BIC community on a total of 29 MRI volume triplets (T1-, T2-, 
and PD-weighted). The raters, who all had substantial previous familiarity with 
neuroanatomy, were supervised by R.F. and trained for at least a month prior to 
data analysis. The criteria for lesion delineation were established by R.F. based 
on existing literature (e.g. [14]) and in collaboration with local neurologists and 
neuroradiologists. 

The primary objective of this validation study is to test the hypothesis that 
there is no statistically significant difference between automatic and manual mea- 
surements, i.e., that the automatic lesion quantification can be seen as yet an- 
other expert manual measurement. In the following, the total lesion load (TLL) 
obtained automatically (INSECT) is compared with those obtained manually 
(human expert) using z-scores, correlation coefficients, and analysis-of-variance 
(ANOVA). For the ANOVA, the treatments, or groups, of the analysis are the 
various manual and the automatic measurements, and the MRI data sets are 
the subjects. A one-way ANOVA shows whether the mean measurements (over 
subjects) of the treatments are equal. 

3 R e s u l t s  a n d  D i s c u s s i o n  

3.1 Independen t  Val idat ion 

An example of the labeled lesion scans obtained in the independent validation 
study is shown in Fig. 2. This figure clearly illustrates the variability present 
amongst different expert observers. 

Fig. 3 shows the total lesion load, for each of the 10 slices included in the 
independent validation study, both obtained manually (mean -4- sd over 7 raters) 
and automatically. Since the measurement variance increases with lesion size, the 
vertical axis shows the cubic root of the TLL, which converts the volumetric TLL 
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Fig. 2. Source MRI data (top row, from left to right: TI-, T2-, and PD-weighted image): 
(second and third row) labeled lesions obtained from 7 sites, and INSECT-obtained 
lesion map (bottom right), for slice data set # 10 (cf Fig. 3 and Table 1). 

measurement to a 'lesion diameter'  (this was only done for illustration purposes; 
all calculations are done on the original, non-transformed data). Table 1 shows 
these data in tabular form including the z-scores and associated p-values, for 
each slice, of the automatic TLL with respect to the mean and sd of the manual 
TLL. Clearly, the INSECT TLL is not significantly different from the average 
manual TLL, and is within one standard deviation from the mean on 9 out of 
10 data  sets. This is confirmed by the ANOVA on these data: F=1.03, p=0.42, 
indicating that  none of the treatment groups is significantly different from any 
of the others. The interrater coefficient of variation (sd/mean over 10 slices) for 
the manual measurements is 44+20% (mean+sd). 

As expected from these data, the correlation coefficient calculated between 
INSECT TLL and the average manual TLL is also very high: r = 0.93, p < 
0.0001. It is also interesting to look at the correlations, over these 10 slices, 
between each pair of measurements. This is done in Table 2, which shows the 
significance levels of these correlations. From this table, it is clear tha t  INSECT 
TLL measurements correlate significantly which the measurements made by any 
and all of the sites, whereas this is true for only 3 out of 7 sites. In other words, 
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INSECT measurements correlate on average bet ter  with manual  measurements  
than  most  manual  measurements correlate with each other. 

The high interrater coefficient of variation obtained from this s tudy is in par t  
due to the fact tha t  each of the sites used their own criteria for lesion selection. 
This illustrates that  there is considerable disagreement among experts  as to the 
identification of MS lesions on MRI, which in general confounds the accuracy 
assessment of computer-aided techniques. 
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Fig. 3. Manual (mean • sd) and automatic TLL measurements for each slice. The 
slices have been ordered with respect to mean manual TLL, which corresponds to the 
order used in Table 1. In order to obtain uniform variance accross data sets, the vertical 
axis shows 'lesion diameter' ( 3 T ~ ) .  

3.2 B I C  Va l ida t ion  

Fig. 4 shows the da ta  obtained from the 29-volume BIC validation (cf Fig. 3). 
effiche z-scores calculated from the data  shown in Fig. 4 show tha t  the INSECT 
TLL is within two s tandard deviations from the mean manual  for 21 out of 29 
(72%) volumes, and within one sd for 14 volumes (48%). Although there are 
a number  of volumes for which the INSECT TLL deviates from the average 
manual  TLL, overall this is not significant, as is shown by ANOVA: F=0.09 
(p--0.97). Similar to the results obtained in the independent validation, the cor- 
relation coefficient calculated between INSECT TLL and average manual  TLL 
is high: r -- 0.95, p < 0.0001. In this case, the palrwise correlations between 
measurements  are all highly significant (p < 0.0001). The inter-rater  coefficient 
of variation (sd/mean)  of the manual  TLLs over the 29 volumes is 27=t=16% 
(mean=t=sd), showing the reduction in variability (down from 44• when all 
raters adhere to the same lesion selection criteria. 
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T a b l e  1. Manual (rain, max, mean, sd, cv) and INSECT-based lesion volume mea- 
surements. Also reported are the z-scores and associated p-values of INSECT versus 
manual. 

445 

T a b l e  2. The significance of the correlation, over 10 slice da ta  sets, between all com- 
binations of manual and automatic  measurements. 

Site INSECT Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 
1 *** * *** **** **** * *** 
2 * *  * - * * n . s .  n . s .  * *  

3 ** *** * **** ** * ** 
4 **** **** * **** *** * ** 
5 ** **** n.s. ** *** n.s. ** 
6 * * n.s. * * n.s. n.s. 
7 * *  * * *  * *  * *  * *  * *  n . s .  

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 

Based  on the  visual  inspec t ion  of the  ' ou t l i e r '  volumes,  where  t he  I N S E C T  
T L L  m e a s u r e m e n t  was s ignif icant ly  different f rom the  d i s t r i b u t i o n  of the  m a n u a l  
measu remen t s ,  a number  of po in ts  can be  made :  1) M a n y  of the  out l ie rs  occur  in 
volumes  wi th  smal l  amoun t s  of lesion (see Fig.  4). I f  the  image  vo lume conta ins  
m a n y  smal l  lesions a n d / o r  the  image  qua l i ty  is poor ,  the  h u m a n  r a t e r s  t e n d e d  to  
be  somewha t  conservat ive  in the i r  measuremen t s .  2) In  the  same  c i rcums tances ,  
different  h u m a n  ra t e r s  of ten ident i f ied different  lesions on the  same  d a t a  set.  3) 
The  c r i t e r ia  for lesion ident i f ica t ion  t h a t  I N S E C T  impl ic i t ly  uses,  are  necessar i ly  
no t  ident ica l  to  those  used  by  the  h u m a n  ra ters .  By  s t u d y i n g  ind iv idua l  cases 
and  long i tud ina l  scan sequences,  we were able  to  conf i rm t h a t ,  a l t hough  its 
m e a s u r e m e n t s  m a y  dev ia t e  f rom the  average  m a n u a l  me a su re me n t s ,  I N S E C T  
was very  cons is ten t  (see Fig.  5). In  cl inical  t r ia ls ,  th is  t y p e  of  r e p roduc ib i l i t y  is 
crucial  for de t e rmin ing  t r e a t m e n t  efficacy. 
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Fig. 4. Manual (mean 4- sd) and automatic TLL measurements for each volume. The 
volumes have been ordered with respect to mean manual TLL. In order to obtain 
uniform variance accross data sets, the vertical axis shows 'lesion diameter' (~ Tv/TL-L) 

4 Conclusion 

Validation studies of INSECT, a fully automatic system for the mass quantitative 
analysis of MRI data, focused on the detection of multiple sclerosis lesions, have 
been presented. These studies consistently show that  there is high degree of 
agreement between automatically and manually detected lesion load in MRI. 
Using ANOVA, no statistically significant differences between automatic and 
manual lesion volume measurements were found. Since INSECT is accurate as 
compared with expert opinion and eliminates intra- and interobserver variability, 
it is a valuable tool for the evaluation of drug therapies in large-scale clinical 
studies. 
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Fig. 5. a and b: T1- and PD-weighted MRI; c: manual labeling at baseline scan (average 
of 4 raters); d: INSECT labeling at baseline; e: average INSECT labeling (over a series 
of 9 scans, taken 3 months apart). The brightness in the 'average' lesion labelings is 
proportional to the frequency of voxel selection. Panel c shows that, on the baseline 
scan, at most 2 of the 4 raters identified what INSECT labeled as a large, elongated 
lesion (d). However, panel e shows that INSECT consistently identified that same lesion 
on 9 consecutive quarterly scans. This volume corresponds to data set # 5 in Fig. 4. 
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