
Reconstruction of the Central Layer of the Human 
Cerebral Cortex from MR Images 

Chenyang Xu 1, Dzung L. Phalli 1,4, Jerry L. Prince 1'2,3, 
Maryam E. Etemad 2, and Daphne N. Yu 2 

1 Electrical and Computer Engineering, 2 Biomedical Engineering, 3 Radiology, 
The Johns Hopkins University, Baltimore MD 21218, USA. 

4 Laboratory of Personality & Cognition, GRC/NIA/NIH, Baltimore, MD 21214, USA. 

Abstract. Reconstruction of the human cerebral cortex from MR images is a 
fundamental step in human brain mapping and in applications such as surgical 
path planning. In a previous paper, we described a method for obtaining a sur- 
face representation of the central layer of the human cerebral cortex using fuzzy 
segmentation and a deformable surface model. This method, however, suffers 
from several problems. In this paper, we significantly improve upon the previ- 
ous method by using a fuzzy segmentation algorithm robust to intensity inhomo- 
geneities, and using a deformable surface model specifically designed for captur- 
ing convoluted sulci or gyri. We demonstrate the improvement over the previous 
method both qualitatively and quantitatively, and show the result of its appli- 
cation to six subjects. We also experimentally validate the convergence of the 
deformable surface initialization algorithm. 

1 Introduction 

Reconstruction of the human cerebral cortex has many research and clinical uses, in- 
cluding applications in human brain mapping, functional imaging, and neurosurgical 
path planning. It is a difficult problem because of imaging noise, partial volume averag- 
ing, image intensity inhomogeneities, extremely convoluted cortical structures, and the 
requirement to preserve anatomical topology. Preservation of topology is important for 
morphometric analysis, surgical path planning, and functional mapping where a repre- 
sentation consistent with anatomical structure is required. During the last decade, there 
has been a considerable amount of work in obtaining a surface representation of the 
cortex [ 1-6]. Most reported methods, however, either require extensive manual interac- 
tion [5] or are capable of reconstructing only the visible cortex [1-4]. 

In [6], a hybrid system eombining fuzzy segmentation, isosurfaces, and deformable 
surface models was presented for reconstructing the central layer of the cortex from 
magnetic resonance (MR) images (see Sect. 2). This method suffers from several prob- 
lems, however. First, if intensity inhomogeneities are present in the acquired images, 
the segmentation used may yield inaccurate results. Second, it was not known whether 
the iterative process used to initialize the deformable surface would converge in general 
since it was only applied to one subject. Third, the traditional deformable surface model 
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used in [6] has difficulties converging to boundary concavities, resulting in the loss of 
deeply convoluted sulci or gyri in the surface reconstruction. 

In this paper, we present several improvements over the method presented in [6] 
for reconstructing the central layer of the entire human cerebral cortex. We address the 
problems of the previous method by using a fuzzy segmentation algorithm which is 
robust to intensity inhomogeneities, experimentally validating the convergence of the 
initialization algorithm, and using a deformable surface model specifically designed for 
capturing convoluted sulci or gyri. In Sect. 2, we briefly review the method reported in 
[6]. In Sect. 3, we describe the segmentation and deformable surface algorithms used in 
our new cortex reconstruction method. In Sect. 4, we present and discuss the results of 
applying our method to six different subjects. 

2 Background 

3. DelormaNe surface initialization I 
I initial surface 

Raw MR images 
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I 2. Fuzzy segmentation I 

white matter ] / 
gray matter 

I 4. Deformable surface model[ 
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Fig. 1. Overview of cortical surface re- 
construction method. 

The method reported in [6] has four ma- 
jor steps as illustrated in Fig. 1. After the 
MR data (T 1-weighted image volumes with 
voxel size 0.9375 x 0.9375 x 1.Smm) are 
acquired, the images are preprocessed to re- 
move extracranial tissue, cerebellum, and 
brain stem. Each volume is then interpo- 
lated to isotropic voxels. Next, a fuzzy c- 
means clustering algorithm (FCM) is used 
to segment the preprocessed data into three 
tissue classes: cerebrospinai fluid (CSF), gray 
matter (GM), and white matter (WM). As a 
result, each tissue is represented as a fuzzy 
membership function. The use of a fuzzy 
segmentation offers robustness to noise and 
partial volume averaging effects and removes  
the dependency on raw image intensity in 
later steps. 

Once the images have been segmented, an initial estimate of the GM/WM interface 
is obtained before refinement to the final central layer. Obtaining an initial surface near 
the desired cortical surface is important because it provides a good starting position 
for deforming the surface, yields a proper initial parameterization of the deformable 
surface, significantly reduces the reconstruction time, and improves the reconstruction 
results. This is accomplished by applying the following operations to the WM member- 
ship function. First, hippocampal formations are manually removed, regions around the 
brain stem are manually filled, and ventricles are automatically filled in the WM mem- 
bership function. An automatic iterative algorithm is then applied to the WM member- 
ship function to ensure that the resulting initial surface has a topology equivalent to a 
sphere. This algorithm consists of the following steps: 
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1. Compute isosurface on WM membership function at 0.5. 
2. Extract largest connected mesh in the isosurface and remove singular points from 

the connected mesh. 
3. Compute Euler characteristic X on the extracted mesh. I f  X < 2, median filter 

the WM membership function, recompute isosurface at 0.5 and go to Step 2. I f  
X -- 2, then the surface topology is equivalent to a sphere, and the initialization is 
complete. 

The final output of this process is a smoothed version of the GM/WM interface with the 
desired topology. 

After the initialization is obtained, a traditional deformable surface model [7, 8] is 
used to refine the initial surface to the central layer of the gray matter. 

3 M e ~ o ~  

In this section, we describe two major improvements upon the method described in 
Sect. 2. The standard FCM segmentation used in the previous method is replaced with 
an adaptive segmentation that is robust to intensity inhomogeneities. In addition, instead 
of using a traditional deformable surface model, an enhanced model is used that allows 
a more accurate reconstruction of the cortex. 

3.1 Adaptive Fuzzy C-Means Segmentation 
MR images may have intensity inhomogeneities caused by nonuniformities in the RF 
field during acquisition. The result is a slowly varying shading artifact over the image 
that can produce errors in intensity-based segmentation methods like FCM. These er- 
rors could potentially cause certain regions of the reconstructed cortex to shift into the 
WM or CSE In [9], an adaptive fuzzy c-means algorithm (AFCM) was proposed for 
segmenting 2-D images that are corrupted by intensity inhomogeneities. Using an iter- 
ative algorithm, AFCM simultaneously computes fuzzy membership functions for each 
tissue class, the mean intensity of each tissue class (called the centroid), and an estimate 
of the inhomogeneity, which is modeled as a gain field. It was shown in [9] that AFCM 
achieves significantly lower error rates than FCM when segmenting images corrupted 
by intensity inhomogeneities. Thus, in order to make the cortical surface reconstruc- 
tion method robust to inhomogeneities, we use AFCM instead of FCM to obtain fuzzy 
segmentations of the MR brain images into classes of GM, WM, and CSE 

We now briefly describe the steps of AFCM for 3-D images. Details of its derivation 
for 2-D images are provided in [9]. Let y(x) be the observed image intensity at x, Uk (x) 
be the membership value at voxel x for class k such that Uk (x) >_ 0 and ~ = 1  Uk (x) = 
1, ck be the centroid of class k, and g(x) be the unknown gain field to be estimated. K ,  
the total number of classes, is assumed to be 3. The steps for AFCM are as follows: 

1. Provide initial values for centroids, Ck, k = 1 , . . . ,  K ,  and set the gain field g(x) 
equal to one for all x. 

2. Compute memberships as follows: 

Ily(x) - g(x)ck II -~ (1) 
~ ( x )  = ~ = ,  Ily(x) - g(x)cll1-2 
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for all x and k = 1 , . . . ,  K 

3. Compute new centroids as follows: 

E •  k = 1,. .. , K  (2) 
c k =  E x  u~(x)g2(x) 

4. Compute new gain field by solving the following space-varying difference equation 
for g(x): 

h" K 

y(x) y ~  u~(x)ck = g(x) E U2k(X)C2k+)q(g(x)*Ha (x))+/~2(g(x)*H2(x)) (3) 
k-----1 k = l  

whereHl (x )  = d~ . dz + dy * dy + dz * dz andH2(x)  = d ~  * dxx + dyy * 
dy u + dzz * dz~ + 2(d~y*dxy) + 2(duz*dy~ ). The operators d~, dy, d~ are finite 
differences along the axes of the image volume, and d,z  = d~ �9 d~, dyy = dy �9 d u, 
dzz = dz * dz, dxu = dz*y, and dxz = dz * dz are second order finite differences. 
Here we have used the notation ]( i )  = f ( - i ) .  The symbol ' . '  denotes the discrete 
convolution operator. 

5. If the algorithm has converged, then quit. Otherwise, go to Step 2. 

Convergence is defined to be when the maximum change in the membership func- 
tions over all pixels between iterations is less than 0.01. In Step 4 of the algorithm, 
)~1 and ,k2 are parameters that control the expected smoothness of the inhomogene- 
ity. These parameters were determined empirically, and have demonstrated robustness 
to inaccurate selection. The gain field 9(x) in Step 4 was computed using a multigrid 
algorithm (see [9]). 

3.2 Deformable Surface Model 

The method reported in [6] used a combination of traditional external forces and un- 
constrained pressure forces for the deformable surface model. The traditional external 
forces are computed by minimizing certain energy functions derived from the data [7, 
8]. A deformable surface model using such external forces, however, has difficulties in 
progressing into boundary concavities [10]. Unconstrained pressure forces, proposed 
in [11, 8], can help push the deformable surface into boundary concavities. However, 
a deformable surface under unconstrained pressure forces can often behave arbitrarily 
and cause the surface to intersect itself. Recently, Xu and Prince [10] developed a new 
external force model, called gradient vectorflow (GVF). The GVF external force field 
has a large capture range and is capable of forcing the deformable surface into bound- 
ary concavities. In this section, we give a brief overview of GVF used in this paper and 
describe our improved deformable surface model by using a combination of GVF and 
a constrained pressure force as its external forces. 

The GVF field v(x)  where x = (x, y, z) E R a is defined as the equilibrium solution 
of the following system of partial differential equations 

vt = #V2v - (v - VUgm)lVugml 2 (4) 
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where vt denotes the partial derivative of v(x;  t) with respect to t, and V 2 o2 = ~ +  
0 2 0 ~ + ~ is the Laplacian operator (applied to each spatial component of v separately), 

and Ugm is the GM membership function. When GVF is computed on thick edges, such 
as in the GM membership function, the resulting GVF field converges to the center of 
the thick edge. 

We use a combination of GVF and a constrained pressure 
force to provide external forces for our deformable surface. 
The resulting external force is given by: 

Fext(X) : [< v ( x ) , n ( x )  > +C(x) ]n (x )  (5) 

where v (x)  is the GVF field, n(x)  is the outward normal vec- 
tor of the surface at x, < -,. > is the inner product of two 
vectors, and C(x)  is a constraint field on the pressure force 
(defined below). Since the component of the external force in 
the tangent plane will only affect the parameterization of the Fig. 2. Example of a 
surface but not its shape, we project v(x)  onto the normal di- deformable contour 
rection at surface position x. Thus, the internal force is solely converging to the 
responsible for controlling the surface parameterization while center of a simulated 
the external force is solely responsible for deforming the sur- GM. 
face towards the feature of interest. 

The constrained pressure force is similar in concept to the signed pressure force 
used in [12]. Unlike the unconstrained pressure force mentioned earlier, the constrained 
pressure force behaves more conservatively and is less subject to the self-intersection 
problem. It is used to increase the speed of convergence as well as reconstruction accu- 
racy, The constraint field C(x)  is designed to turn off the pressure force once the surface 
enters the GM and leaves the surface under the influence of GVF external forces only. 
C(x)  is defined to be: 

C(x)  = { 0 if 12Uwm(X) + l t g m ( X  ) - 11 < 
2Uwm (x) + Ugra (X) -- 1 otherwise 

where uwm(x) and Ugm(X) are white matter and gray matter membership functions, and 
is a threshold to control the width of the gray matter region where the pressure force 

is disabled, d is chosen to be 0.5 in our experiments. To help understand the behavior 
of the external forces, we apply a 2D deformable contour, a 2D analog to deformable 
surfaces in 3D, using external forces defined in (5) on a phantom simulating WM and 
GM of the brain. In Fig. 2, WM is depicted as the white region in the center and GM 
is depicted as the surrounding gray ribbon. The initial deformable contour is the circle 
shown in black and the final converged contour is shown in white. Note that the final 
contour indeed converges to the center of the simulated GM. 

4 Results 

The described cortex reconstruction method was applied to MR brain images from six 
subjects, four taken from the Baltimore Longitudinal Study on Aging [13]. Using an 
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Table 1. Euler characteristics of surfaces generated for six subjects at different iterations. 

Iteration(s) 0 
Subject 1 -757 
Subject 2 -1010 
Subject 3 -666 
Subject 4 -860 
Subject 5 -192 
Subject 6 -462 

1 2 3 4 5 6 7 8 9 1520] 
-49-6  2 - -  
-56 -14 -4[ -2  -2 -2 -2 0 2 - - 
-50 -16 -12 ~ -4 -2 0 0 2 
- 6 6 - 2 4 - 8 - 6 - 2 - 2 - 2  2 
-75 -40 -27 -22 -19 -17 -16 -14 -12 -4[ 2 
-26 -12 -6  0 2 - 

SGI 0 2  workstation with a 174 MHz R10000 processor, the total processing time per 
subject varied between 4.5 and 6.5 hours. The time required for manual interaction 
varied between 0.5 hours and 1 hour for a trained operator. AFCM required approx- 
imately 1 hour. The automated steps in GM/WM interface estimation take about 0.5 
hours which produces a mesh with between 200,000 and 400,000 vertices. Because 
of  the large number of  vertices in the mesh, it takes the deformable surface algorithm 
about 3 hours to produce the final reconstructed surface. Note that both AFCM and the 
deformable surface algorithm are fully automated steps. 

Fig. 3. Surface rendering of reconstructed cortical surface from one study using (a) the previous 
method, and (b) the current method. The coronal slice across the anterior commissure superim- 
posed with the cross section of the corresponding reconstructed cortical surface using (c) the 
previous method, and (d) the new method. 

The application of  the method to multiple subjects allowed a preliminary validation 
of  the convergence of  the deformable surface initialization algorithm (see Sect. 2). In all 
six cases, the topology of  the surface converged to the correct topology in less than 20 
iterations. The result is shown in Table 1. Note that an Euler characteristic of  2 implies 
that the surface has a topology equivalent to a sphere and that a value smaller than 2 
implies that the surface has one or more handles (like the handle of  a coffee cup). The 
smaller the Euler characteristic is, the more handles a surface has. From the results, we 
observe that the median filter used in the iterative process effectively eliminated handles 
on the surface and that the Euler characteristic was nondecreasing with each iteration. 
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In Figs. 3(a) and 3(b), we show the surface rendering of the reconstructed cortical 
surface from one subject using the previous and the new methods. Notice that although 
the two surfaces look similar overall, the new method seems to maintain more details. In 
Figs. 3(c) and 3(d), we show the coronal slice across the anterior commissure superim- 
posed with the cross section of the corresponding reconstructed cortical surface using 
the previous and the new methods. It is apparent from this view that the new method 
yields more accurate results. 

The accuracy of the previous and new methods were also compared quantitatively 
by computing landmark errors. A trained operator identified five landmarks on the cen- 
tral cortical layer for each hemisphere. The landmarks are located on the root of the 
central sulcus (CS), the crown of the post-central gyrus (PCG), the most anterior point 
of  the temporal lobe (TL), midway along the calcarine fundus (CALC), and the medial 
frontal gyrus (MFG). The landmark error was then computed as the minimum distance 
between the given landmark and the surface. Table 2 shows the results of landmark er- 
rors using the previous and the new methods for two hemispheres. On average, the new 
method offers an improvement of approximately 25% over the previous method. 

Table 2. Landmark errors comparison (in mm) 

Method CS1 CS2 PCG1 PCG2 TLI TL: ICALCx CALC2 MFG~ MFG2 Mean Std 
Previous 1.9 2.6 0.7 0.7 0.5 1.3 1.0 0.4 0.9 1.0 1.10 0.68 
New 0.5 2.1 0.7 0.4 0.5 1.4 0.7 0.4 0.5 1.1 0.83 0.55 

In Fig. 4, we show where the reconstructed cortical surfaces intersect coronal slices 
taken through the anterior commissures of each subject. These figures show that the 
surfaces reside on the central cortical layer and that buried gyri (such as the insula) are 
found. It should be noted that isolated closed 2-D contours appearing in these images 
are actually part of  the 3-D surfaces, which are topologically equivalent to spheres. 
Although most gyri are properly modeled, certain regions, such as the superior temporal 
gyrus, are sometimes not found accurately. We are considering further improvements to 
correct these deficiencies and to further decrease the need for manual interaction. 
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