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Abstract .  In this paper we present a novel method for three-dimensional 
segmentation and measurement of volumetric data based on the combi- 
nation of statistical and geometrical information. We represent the shape 
of complex three-dimensional structures, such as the cortex by combin- 
ing a discrete 3D simplex mesh with the construction of a smooth sur- 
face using triangular Gregory-B~zier patches. A Gaussian model for the 
tissues present in the image is adopted, and a classification procedure 
which also estimates and corrects for the bias field present in the MRI 
is used. Confidence bounds are produced for all the measurements, thus 
obtaining bounds on the position of the surface segmenting the image. 
Performance is illustrated on multiple sclerosis phantom data and on real 
data 

1 I n t r o d u c t i o n  

The segmentation of three-dimensional structures is fundamental to medical vi- 
sion applications. Voxel-based [16], slice-based [1,12,14], and deformable 3D sur- 
face methods [6,15,18] have been proposed, the latter being preferred because of 
the intrinsically three-dimensional nature of the data  sets and the flexibility of 
having a surface segmenting the objects in it. The shapes of some structures to 
be segmented, such as the brain cortex, poses an additional problem, since the 
shape representation must be able to cope with such complexity. 

Often, and central to this article, in clinical studies the size of the effect to 
be studied is small relative to the voxel size. This is the case, for example, when 
analysing the time evolution of multiple sclerosis lesions during drug t reatment  
or patient therapy [4], and also when assessing differences in brain asymmetry 
associated with schizophrenia [5,7]. Accuracy becomes critical, necessitating con- 
fidence bounds for every measurement obtained from the data  sets. To provide 
clinically meaningful results, the width of the confidence interval should be sig- 
nificantly smaller than the size of the anatomical effect to be studied. To this 
end, we describe a method for 3D segmentation from volumetric data  combining 
both a statistical model of the tissues present in the image a~d a geometric tem- 
plate of the expected shape, and we explain how volume measurements, together 
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with confidence intervals, are obtained from it. Following [11] and [20], the voxel 
intensities corresponding to a certain tissue type are modelled as a Gaussian dis- 
tr ibution with small variance. Two main problems arise when using this model 
to classify voxels into tissue types, namely corrupting bias fields, and partial vol- 
ume effects. Both are addressed in our method, which estimates and corrects for 
the bias field and regards partial volumes as an indicator of boundary location. 

Complex biological shapes require a shape modeling technique that  is pow- 
erful enough to capture sufficient detail, flexible enough to be adapted easily 
to segment the data, and able to construct higher-level shape descriptors. We 
use the simplex mesh [6] in an initial step, followed by the construction of a 
smooth surface using triangular Gregory-B@zier patches [17]. Segmentation of 
the data  is guided by the probabilities computed in the statistical classification, 
a set of forces implemented on the simplex mesh, and a template of the ex- 
pected shape built by applying a principM component analysis (PCA) to a set 
of pre-segmented structures. 

The following section describes the statistical model and the bias correction 
algorithm used to classify the voxels and to detect partial volume effects. Next, 
the shape representation model, fitting process, and error bound computation 
are explained. Finally, a set of results are shown for phantom and real data. 

2 S t a t i s t i c a l  m o d e l  

A Gaussian distribution with small variance centred on an intensity value is used 
to model the image intensities corresponding to each tissue type. Ideally, this 
model should suffice to establish a classification of the voxels into tissue types, 
but real MR acquisitions pose two problems, namely corrupting bias fields, which 
modify the intensity of a same tissue voxel depending on its location, and partial 
volume effects due to the presence of more than one tissue type in a single voxel. 

The intensities present in a MR image are often corrupted by a multiplicative, 
spatially varying bias field [9,11]. Many techniques have been proposed to deal 
with this problem [2,8,19],and the one we use is described in [11], being a 
modification of the method introduced by Wells and Grimson [20]. The technique 
uses the E-M algorithm to estimate iteratively the bias field and, for each of the 
voxels in the image, the probability that  it belongs to each tissue type. Tissue 
types are modelled as Gaussian distributions, and a zero-mean Gaussian model 
is also assumed for the bias field. Figures 1A and 1B show a slice of a MRI and 
its corresponding corrected image. The estimated bias field is shown in figure 
1C. 

An image segmentation into tissue classes can be obtained by assigning to 
each voxel the tissue type for which its probability is highest, that  is, has maxi- 
mum likelihood. However, in some cases, the maximum likelihood is still small, 
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typically because the intensity value of the voxel after bias correction does not 
fit well to any of the tissue distributions. These voxels are regarded as containing 
several tissues, that is, exhibit the partial volume effect (PVE) [16]. Intuitively, 
voxels belonging to the boundaries between tissues are likely to be most affected. 
Indeed, we can consider low maximum likelihood voxels as good candidates for 
boundary voxels. Figure 1D shows the segmentation using explicit Gaussian tis- 
sue models for grey matter and white matter, together with a uniform extra 
class to cater for background and CSF [11]. PVE voxels are coloured white. 

Fig. 1. A) Original slice; B) corrected slice; C) estimated bias field; D) segmentation 
using a tissue model for white matter and grey matter, plus a uniform class for CSF, 
air, and other tissues (PVE voxels are coloured white). 

3 G e o m e t r i c a l  3 D  s e g m e n t a t i o n  

Geometrical segmentation aims to detect the outer surface of the structure to be 
segmented. The advantage of such techniques is that they enable the specification 
of prior knowledge about the expected topology and shape of the structure by 
including an initial average model and a description of the allowed variability in 
shape [3,18]. We use the simplex mesh [6] technique for 3D segmentation, then 
construct a continuous, smooth surface by means of triangular Gregory-B@zier 
patches [17]. Prior knowledge is included by applying a principal components 
analysis (PCA) on the nodes of the simplex mesh, as described later. 
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A simplex mesh is a discrete shape model, formally defined as a set of 3- 
connected nodes. A framework in which a simplex mesh is used to segment 
volumetric data  is described in [6]. A set of internal forces model properties of 
the structure, such as its elastic behaviour or constraints on continuity of the 
normals of the nodes; similarly, external forces are implemented and make the 
model converge towards the target volumetric data. The mesh is initialised and 
subjected to these forces following Newtonian dynamics: 

d2 pi dPi 
m dt 2 = -7---~- + Fiat + Fext, 

where m is the mass unit of a vertex, Pi is the position of the i th node at 
t ime t, and V is a damping factor. 

Several operations enhance the flexibility of the simplex mesh when segment- 
ing three-dimensional data. Some can be applied to alter the topology of the 
mesh, so rendering it suitable for complex shapes or for scale-space approaches 
to segmentation. Additionally, the density of the mesh is updated by a refine- 
ment process which increments the number of nodes in areas where a high level 
of detail is required. A further attractive property of simplex meshes is tha t  they 
are dual to triangulations. 

Prior knowledge about the expected shape of the structure to be segmented 
can be introduced into the model by acting on the internal forces that  drive the 
fitting process, but this is not a very flexible method. Marais [13] has developed 
a scheme in which a PCA is applied to the nodes of a set of meshes segmenting 
the same structure in different patients. The result of this process is an average 

mesh M and a set of eigenvectors containing the n principal modes of variation, 
u l , . . . ,  Un. Other meshes are then expressed in terms of these elements: 

n 

i z l  

This process not only limits the amount of information required to describe an 
object (the set a l , . . . ,  an of coefficients), but  also restricts the allowed variabil- 
ity in shape, so avoiding unwanted excessive deviations from the average model. 
Although the simplex mesh has the advantages enumerated above, it is intrin- 
sically not smooth, posing problems for volume estimation of smooth, highly 
convoluted surfaces, such as the cortex. To address this problem, a triangulation 
is built from the simplex mesh by adding a vertex in the centre of each face of 
the mesh and updating its position to the nearest data  point in the direction 
of the normal of the face, by means of a local search. Then, smooth triangular 
Gregory-B~zier patches on each triangle are used to build a Gl-continuous sur- 
face (continuity in the tangent plane) passing through the nodes of the simplex 
mesh, without the need to use interpolating polynomials of very high degree. 



503 

Triangular Gregory-B~zier (tGB) patches [17] are tricubic surfaces in barycen- 
tric coordinates, defined by 15 control points (refer to Figure 2): 

GB(u, v, w) = u3Po + v3P1 + w3P2 + 
12u2vwP211 + 12uv2wP121 + 12uvw2P112 + 
3u2v(1 - w)P01 + 3uv2(1 - w)P02 + 3v2(1 - u)wPll + 
3(1 - u)vw2p12 + 3u(1 - v)w2p21 + 3u2(1 - v)wP22 

where 0 < u,v ,w < 1 , u + v + w  = 1 and: 

P211 = W/O2Vll "~ V_t l l  , P w  P121 ---- uPiW21 -~ w_lzl,PU/:)112 : 
w + v  u + w  

vP1'l  + 
v + u  

u=l 

u=0 

Fig. 2. Triangular Gregory-B6zier patch, defined by 15 control points. A Gl-continuous 
mesh of tGB patches is used to interpolate the nodes of the simplex mesh and its 
corresponding normals. 

The tGB interpolation process leaves one free control point in each of the 
edges of the triangulation, thereby enabling an even closer fit to the data. Sev- 
eral fitting strategies are being developed, namely local minimisation of distances 
from points inside a particular patch to the nearest data points, global minimi- 
sation of all the distances in the mesh, and a hybrid scheme where distances are 
minimised in a certain patch and its neighbouring patches up to a certain level, 
weighting the contribution of the neighbours as a function of the distance. 

A desirable property of tGB patches is that  analytic formulae for local posi- 
tion and derivatives are available, enabling the computation of shape descriptors 
based on differential geometric quantities, such as curvature. In a similar vein, 
the surface area and volume enclosed by a simplex mesh can be computed an- 
alytically using the divergence theorem. The availability of these measures is 
important  in the development of quantitative shape descriptors applicable to 
medical structures, which is one of the most important  ongoing lines of research 
in medical imaging. 



504 

4 Edge search and confidence bounds 

We assume that  PVE voxels correspond to boundary voxels. This information 
initiates the simplex mesh, which looks for the closest boundary voxel when 
updating its nodes. This search samples the neighbouring voxels in the direction 
of the normal of the node, by means of fast, local, 1-D searches, similar to those 
used in [1]. The same mechanism is used when computing distances from patch 
points to data  points in the process of fitting tGB patches to the simplex mesh. 

Due to the partial volume effect, boundary transitions from one tissue to 
another can occupy more than one voxel. The location of the boundary can thus 
be bounded by this volume, i.e. from pure voxels of one tissue to pure voxels of 
another tissue. This interval defines the confidence bound for the measurement. 
Two simplex meshes and tGB surfaces are computed, representing the upper and 
lower bounds on the position of the real surface of the structure being segmented. 
The upper simplex mesh estimate is built by creating a parallel surface tangent 
to the data  points found searching from the centre of each polygon (Figure 3). 

Fig. 3.2D illustration of the 3D construction of the upper estimate on surface location 
using the simplex mesh. Upper and lower estimates on the location of the vertices of 
the mesh are obtained by local searches approximating to the nearest non-PVE voxel 
(left). Then, the position of the centre of the polygon (line in 2D) is updated to the 
nearest data point and a parallel surface is built (right). 

5 Results  

Several experiments have been performed in order to assess the performance of 
the method. Initially we used synthetic MRI data  sets to validate the working 
of the program and to demonstrate that  the tGB patches gave upper and lower 
bounds on volumes that  are far tighter than those using voxel counting or the 
refined simplex mesh; [10] provides details and the imaging protocols that  we 
simulated. Then we experimented with a phantom consisting of a group of shapes 
made from paraffin wax and embedded within an agarose gel. By measuring the 
density of the wax, the true volume can be derived from the weight within a 
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confidence interval of 2% [16]. The phantoms simulate the size and shape of 
multiple sclerosis lesions, which are usually small relative to the MR acquisition 
resolution. Simplex mesh segmentation with low density, tGB fitting, and sim- 
plex mesh refinement volume measures were obtained. The results again show 
that  the best volume bound estimates are from the use of a mesh of tGB patches 
interpolating the simplex mesh. It is worth noting that,  although the refinement 
method of the simplex mesh improves the volume measurement significantly, the 
use of a continuous surface results in a much bet ter  estimate. These results are 
typical of the ones we have achieved with simulated and phantom data  [10]. 

More recently, we have begun to test the method on an in-vivo Tl-weighted 
MRI data  set consisting of 124 slices of 256x256 voxels of size 0.781251 • 0.78125 • 
1.7ram 3 (TE=9000ms, TR=24000ms). In this case, no ground t ru th  about  the 
volume of the object to be segmented is available; for this reason we scanned the 
volunteer twice, the second time with his head rotated through about 20 - 30 ~ 
(Figure 4). Results are given for the left ventricle of the patient. 

Fig. 4. Slice 56 of the MRI acquisitions used for the study: normal (left) and ro- 
tated(right). Note the significant rotation of the right image. 

The data set is first bias corrected assuming only one tissue encompassing 
white mat ter  and grey matter,  plus a uniform class modelling the rest of tissues 
plus CSF and air. Probability maps for the different tissues are generated, and a 
pre-segmentation labels voxels with a probability smaller than 95% of belonging 
to one of the tissues as PVE voxels (see Figure 1). A simplex mesh is fitted to the 
data  using the information of the map to guide it. Two meshes are fitted to obtain 
an upper and a lower bound (sm U and sm L) of the location of the surface. 
The numbers of vertices for the fitted refined mesh are 1538 (771 polygons), 
and 1558 for the rotated set (781 polygons). A set of tGB patches is then built 
(tGB U, tGB L). For the sake of comparison, voxel-based segmentations were 
performed and validated by an expert using a thresholding tool and setting two 
thresholds in order to obtain upper and lower bounds (voxel U and voxel L). 
Volume measurements are shown in Tables 1 and 2. 
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straight rotated 
smU 12192 11100 
voxelU 10090 9770 
t G B U  9454 9574 
tGB L 7835 7998 
s m L  7373 7483 
voxel L 7314 7162 

straight,rotated 
,sm 4819 3617 
voxel 2776 2608 
tGB 1619 1576 

Table 1: Measured vol. (mm 3) of 
left ventricle (initial and rotated). 

Table 2: Width of confidence interval 
(upper bound - lower bound). 

Figure 5 shows the upper and lower bounds on the volume of the ventricle, 
and Figure 6 shows the width of the confidence interval. There are two points 
to note about Figure 6. First, the confidence interval is significantly smaller for 
the tGB model, and second, the interval is almost invariant to the patient head 
rotation. 

!iiiiiiiiiiiiiiiiiiiiiiiI!iiiiiiii!iiiiiii!i 
E 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i 
I t I I I I 

sm voxel tGB sm voxel tGB 
rotated rotated rotated straight straight straight 

Fig. 5. Volume estimates for the left ventricle (ram3), with the conditions indicated 
in the tables above, and for the original and rotated configurations. The vertical bars 
show the difference between the upper and lower volume estimates. 

6 F u t u r e  w o r k  

The method currently forms a framework for the segmentation and measurement 
of MRI data, leading to the estimation of two surfaces representing an upper and 
a lower bound on the location of the real surface. We are progressing towards 
estimating the most probable location of the surface inside the interval. PVE 
voxels can be modelled as weighted mixtures of two distributions on intensities. 
Using information about the neighbouring tissues, their distributions, and the 
intensity of the voxel, a probability distribution function (pdf) on the proportion 
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Fig. 6. Width of the confidence interval in the original and rotated condition. The best 
results axe obtained by using a mesh of tGB patches interpolating the simplex mesh. 
Note that the results for the tGB patches axe almost invaxiant to patient head rotation. 

of each tissue present in the voxel can be computed. In turn, this will yield a 
pdf  on the measurement so that  both a mean/mode  and a standard deviation 
can be computed. 

The flexibility of the shape model is being investigated. A mesh consisting 
of a set of G1 continuous tGB patches leaves one degree of freedom on each 
edge connecting two patches. These free control points are currently set to min- 
imise fluctuations on the surface, but a method that  minimises the least-squares 
distance between the patch and target data points is being implemented. This 
scheme could be modified to minimise the difference between the proportions of 
each tissue in a voxel estimated as described above, and the proportions derived 
from the intersection of the tGB patches with each voxel. 

Volume is by no means the most sensitive shape descriptor, and more so- 
phisticated descriptors, suitable for medical applications, are being developed. 
The availability of a smooth continuous surface segmenting the object enables 
geometrical descriptors such as curvature to be computed and bounded. The 
segmentation method sketched in this paper shows an improvement over other 
existing techniques, in the sense that  the confidence intervals are significantly 
narrower. An in-depth study is under way to assess whether this technique will 
be able to provide clinically valid measurements from MRI for problems such 
as segmentation of multiple sclerosis lesions or schizophrenia studies, where the 
size of the effect to be studied is small relative to the voxel size. 
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