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Abstract. We present an approach which performs the automatic la- 
beling of the main cortical sulci using a priori information for the 3D 
spatial distribution of these entities. We have developed a methodology 
to extract the 3D cortical topography of a particular subject from in 
vivo observations obtained through MRI. The cortical topography is en- 
coded in a relational graph structure composed of two main features: arcs 
and vertices. Each vertex contains a parametric surface representing the 
buried part of a sulcus. Points on this parametric surface are expressed 
in stereotaxic coordinates ( i.e., with respect to a standardized brain co- 
ordinate system). Arcs represent the connections between these entities. 
Manual sulcal labeling is performed by tagging a sulcal surface in the 3-D 
graph and selecting from a menu of candidate sulcus names. Automatic 
labeling is dependent on a probabilistic atlas of sulcal anatomy derived 
from a set of 51 graphs that were labeled by an anatomist. We show how 
these 3D sulcal spatial distribution maps can be used to perform the iden- 
tification of the cortical sulci. We focus our attention on the peri-centrai 
area (including pre-central, post-central and central sulci). Results show 
that the use of spatial priors permit automatic identification of the main 
sulci with a good accuracy. 
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1 I n t r o d u c t i o n  

Cortical sulci and gyri define gross anatomical  landmarks  on the surface of the 
cerebral cortex. Several studies have suggested tha t  some major  functional ar- 
eas can be located with respect to these anatomical  landmarks,  allowing a pri- 
ori localization of functional areas. The most  impor tant  illustration of such 
an anatomo-functional  correlation comes from the observation tha t  the central 
sulcus delimits the sensory area (located on its posterior gyrus, known as the 
postcentral  gyms)  from the motor  area located on its anterior gyrus (precen- 
t ral  gyms) .  Such a priori  knowledge of functional localization is incorporated 
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in many neurological applications (neurosurgery, for example). However, high 
inter-individual variability of the cortical topography (associated with the intrin- 
sic complexity of the 3D cortical fold patterns) make the identification of these 
landmarks a tedious task. We know that variability of the cortical topography is 
due to gross brain shape differences between individuals, but also to structural 
deformation of the cortex. This deformation appears in particular when a sulcus 
(generally associated with a continuous cortical fold) is decomposed in several 
apparently independent folds on another subject. Similarly, generally connected 
adjacent sulci can be sometimes disconnected. Finally, tertiary sulci seem to 
have random patterns. Processes that are used by experts to perform the iden- 
tification of cortical folds mix both structural and spatial a pr ior i  knowledge 
on the most likely structural patterns of the cortical sulci and their most likely 
location. Recently, probabilistic brain atlas methodology has been introduced to 
deal with the intrinsic brain shape variability [1]. This methodology allows the 
construction of 3D probability maps representing the normal spatial variability 
of the main anatomical structures. In this paper, we study the use of such a 3D 
probabilistic atlas of the main sulci, computed from 51 brains, to perform the 
identification of the cortical folds based on spatial priors. 
In the following we describe our methodology to extract a 3D representation of 
the cortical topography from 3D MRIs. By working systematically in a standard- 
ized brain coordinate system, we are allowed to study the 3D spatial variability 
of the extracted cortical sulci. These probabilistic maps provide us with a pr ior i  
knowledge on the localization of the main sulci and can be used to assist in the 
identification of the main cortical sulci. Here, we particularly focus our attention 
on the identification of the sulci of the peri-central area (precentral, central and 
postcentral sulcus). 

2 B a c k g r o u n d  

For several years now, an increasing interest has been given to both the segmen- 
tation of the cortical topography as well as its automatic labeling. The range of 
image processing and pattern recognition methodologies applied to these tasks 
are wide, leading to a difficult classification or comparison. We have chosen to 
first make a distinction between methodologies that model the cortical topog- 
raphy of a single subject without labeling individual sulci, from methodologies 
that attempt to identify specific cortical patterns. 

2.1 R e p r e s e n t a t i o n  o f  t h e  C o r t i c a l  T o p o g r a p h y  

The goal of the cortical topography modeling is to represent explicitly each 
cortical fold and the organization of these entities (connection, adjacency). At 
this step it is particularly convenient to distinguish between : 

- modeling of single versus  all cortical folds 
- modeling of exterior trace versus  median surface 
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Existing methods can be classed of crossovers between these two subgroups : 

- modeling of exterior trace of all cortical folds [2][3][4] 
- modeling of the median surface of a cortical fold [5][6] 
- modeling of the median surface of all the cortical folds [7] [8] [9] 

Considering the fact that more than 2/3 of the total cortical surface is buried 
within the cortical folds, it is of the utmost importance to model the median 
surface of the sulci, not only the superior trace. This kind of modeling allows 
a better understanding of the cerebral cortex topography by showing patterns 
that previously were only observable form post mortem subjects. 

2.2 A u t o m a t i c  Ide nt i f i c a t i on  o f  t h e  C o r t i c a l  T o p o g r a p h y  

Identification of the cortical folds can be proposed through the atlas matching 
paradigm [10] [2] [4]. In this methodology a brain model (where all anatomical 
structures have been labeled) is matched to a studied brain. Identification of 
anatomical structures on the studied brain is then realized by transferring the 
labels contained in the model to the studied brain through the recovered non- 
linear warping. However the considerable inter-subject structural variability of 
the cerebral cortex topography is not sufficiently well-modeled to allow accurate 
labeling of individual sulci by this methodology [11]. In particular the basic hy- 
pothesis (one to one correspondence between each voxel of the brain model and 
the studied brain) on which the elastic warping method is based in not verified 
for the cortical topography. 
More complete a priori information about the normal cortical topography is 
needed to perform a correct identification of the cortical folds. Both statistics 
about structural patterns of the cortical fold (information which can be seen 
as being independent from a coordinate system) and information regarding the 
spatial localization of the cortical folds are necessary to perform a correct iden- 
tification. In [12] [3] [13] such informations are used to perform the identification 
of 6 main sulci. Knowledge is expressed in the form of heuristics that are defined 
for each of the sulci. Recognition is performed as a search through the combi- 
nation of automatically extracted sulcus patterns that best match a heuristic 
model (note that heuristics have to be defined for each sulcus of interest). The 
weakness of this application stems from the fact that the recognition is per- 
formed in a sequential manner (recognition of the central sulcus, followed by 
the research of the pre-central sulcus . . . .  ), a method that seems to differ from 
the constant accept~reject trial hypothesis as performed by an expert. Another 
promising application has been developed by Mangin et al. [8]. In this applica- 
tion the cortical topography is modeled as the realization of a random graph. 
Recognition is performed through graph matching between a model graph con- 
raining information about the normal variability of the cortical topography and 
the corresponding graph of the studied subject brain. The methodology used is 
based on the structural pattern recognition paradigm where information about 
the structural decomposition of an object is used to automatically performed its 
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identification. While the structural knowledge on the main sulci is explicitly used 
in this application, spatial priors (which represent also important knowledge to 
drive the recognition problem) are poorly used. In fact, in this application only 
a bounding box defines the a priori localization of each sulcus. Moreover, the 
matching method, based on a simulated annealing algorithm, is computationally 
intensive and requires the adjustment of numerous ad hoc parameters. 
From our knowledge, few methods have been based on the use of spatial priors 
(however refer to[14]), and of these only a few sample brains are used to estimate 
the 3D probability maps of the sulci. Also, it is not well known if a good labeling 
of cortical sulci can be performed through this simple use of spatial priors. 
The method we propose here to assist the labeling of the cortical folds consists 
of assigning to each automatically extracted cortical fold, the sulcus' name for 
which the associated 3D probability map is maximum, given the location of the 
actual fold. This involves i) the extraction of an explicit representation of the 
cortical topography composed of a set of folds and junctions between these en- 
tities; ii) the computation in a standardized 3D stereotaxic space in order to 
compute the sulcal probability maps and link the actual 3D spatial position of a 
cortical fold with these computed probability maps. The method we have used 
to solve i) can be classified as a method which models the median surface of 
all the cortical folds (refer to section 2.1) and will be described in the following 
section. The second point (ii) is solved by using an automatic linear matching 
algorithm which transforms each brain into a standardized stereotaxic space. 3D 
sulcal distributions are then computed in this common referential frame. Result- 
ing 3D maps (computed from 51 brains) are then used to identify the cortical 
folds. Results show colored extracted 3D cortical topography graphs, where each 
color corresponds to a specific sulcus name. 

3 M o d e l i n g  o f  t h e  C o r t i c a l  T o p o g r a p h y  

We describe here the method used to extract the cortical topography from a 3D 
MRI. 

3.1 Preprocessing 

The goal of the preprocessing is to extract the brain tissues, namely the Grey 
Matter (GM) and the White Matter (WM). An artificial neural network clas- 
sifter is applied to identify GM/WM/CSF tissue types [15] on 3-D MRI, after 
correction for 3-D intensity non-uniformity[16]. The classification method uses 
spatial priors on the location of each tissue type. This last condition implies that 
all computations must be carried out in common referential frame. Therefore, 
we use an automatic registration program which uses a 3-D cross-correlation 
approach to match the single MRI volume with the intensity average of 305 
MRI brain volumes previously aligned into standardized stereotaxic space [17]. 
The registered volumes are then resampled on a 1 mm 3 voxel grid. A geometric 
surface representing the brain cortical surface is automatically extracted using 
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iterative minimization of a cost function [18]. This last step separates voxels 
belonging to the brain from those located in the cerebellum. All following com- 
putations are carried out within the standardized stereotaxic space (refer also 
to section 4). 

3.2 Processing 

Detection of each Sulcus Exter ior  Trace The method we have used to 
detect the exterior traces of cortical sulci combines morphological closing (di- 
latation followed by an erosion) [19] to fill the interspace between adjacent walls 
of a sulcus and curvature analysis in the cerebral cortex. We have previously 
shown that the sign of the mean curvature was a good indicator to separate the 
sulci from the gyri (refer to [20]). By detecting the voxels which have a positive 
curvature on the bounding hull of the brain we are able to detect the superior 
traces of the sulci. We apply a thinning method (refer to [21]) in order to reduce 
this set of voxels to a set of curves and junctions between curves. We obtain at 
this step the superior traces of the sulci. 

Detection of each Sulcus M ed ian  Surface We then model each of these 
curves with our active ribbon method in order to extract the median surface of 
each sulcus [22].To summarize, the active ribbon method consists of modeling 
each curve by a spline and subjecting it to a set of forces designed such that 
the active model will move smoothly from the initial superior trace of the sulcus 
toward the bottom of the sulcus. The second step of the active ribbon method 
consists of modeling the successive loci of this active curve , from its initial 
position towards its final position, by an active surface which converges toward 
the actual median surface of the fold. The active ribbon method allows for the 
retrieval of a parametric surface representing the median surface of each fold of 
the cerebral cortex. 

3.3 Encoding  of  the  Cort ical  Topography 
The representation of the cortical topography is directly derived from these 
results : 

GCT = {F, J} 
where GCT, the Graph representing the Cortical Topography of a particular 

subject, is composed of F a set of f folds (one or several folds may constitute a 
sulcus as defined by an anatomist) and J a set of j junctions (see examples on 
figure 2). 

4 Computation of 3D sulcal probabilistic maps 

As said previously, all computations are realized in the same brain-based coor- 
dinate system after application of the automatic linear matching algorithm used 
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during the preprocessing (refer to section 3.1). The coordinate system is defined 
as follows : 

- (0, ~2, ~ ,  ~2) : where 0 the origin of the coordinate system is the anterior 
commisure (AC) ; -~, 3], ~ are oriented like the brain referential frame de- 
fined by Talairach [23], with -~ left-right axis, 3] the postero-anterior axis 
and -~ the inferior-superior axis. 

- ( sx ,  sy ,  s z )  : linear scaling factors. In order to reduce the spatial variability 
of brain structures due to gross brain size differences, all brains are fit into 
the same bounding box after registration (refer to [17]). 

An anatomist has identified 16 main sulci on 51 extracted cortical topography 
graphs. These sulci were : (a) the Central Sulcus and (b) the Sylvian Fissure; (c) 
the Superior, (d) the Middle, and (e) the Inferior Frontal Sulci; (f) the Ascending 
and (g) the Horizontal Rami of the Sylvian Fissure, as well as (h) the Incisura 
(located between these other two rami); (i) the Olfactory Sulcus as well as (j) 
the Sulcus Lateralis, (k) the Sulcus Medialis, (1) the Sulcus Intermedius, and (m) 
the Sulcus Transversus (all found along the orbitofrontal surface of the brain); 
(n) the Precentral and (o) the Postcentral Sulci; and finally (p) the Intraparietal 
Sulcus. 
By averaging the labelings of a structure, a continuous 3-D probability field 
(0.00-1.00 at each voxel) can be constructed for each identified structure. This 
average is known as a Statistical Probability Anatomy Map (SP_AM)[24]. 

5 S u l c u s  I d e n t i f i c a t i o n  U s i n g  a P r o b a b i l i s t i c  A t l a s  

5.1 E s t i m a t i o n  o f  a P e r t i n e n t  P r o b a b i l i t y  T h r e s h o l d  

To define this threshold we study the overlap between adjacent SP_AMs. Illus- 
trations of such overlaps with respect to a selected threshold can be seen on the 
figure 1. 

We conclude that a probability threshold of value Pthresh : 0.1 yields a 
minimal overlap between adjacent SP_AMs. 

5.2 I d e n t i f i c a t i o n  

Identification is performed as follows: for each automatically extracted fold we 
can compute the probability that this fold belongs to each computed SP_AM. 
We then have a probability vector: 

~' = ~(~0),...  ,P(0m-1)] (1) 

where m is the number of computed SP_AMs, 6i is a sulcus name. We then find 
the maximum element of this vector, let say p(Sk), and apply the following rule: 
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Fig. 1. From left to right : 3D iso-surfaces of the sulcal distribution (computed from 
51 subjects) for the precentral, central and postcentral sulci thresholded at different 
levels. Left  image is obtained with a probability threshold Pthresh = 0.001. All the 
voxels which have a value superior to this threshold are kept. As the minimum non-zero 
probability value is 1/51, all non-zero locations of probability maps are kept. One can 
see the important overlap between these adjacent SP.AMs. Middle:  Pthresh - ~  0.05. 
Right:  pth~esh = 0.1. One can see the null overlap when taking this threshold. Note 
that with this threshold, all the voxels kept belong to the same sulcus on at least 6 
different subjects upon 51. (note that the brain model, displayed at 50~ of its original 
size, is only used to figure the orientation) 

if p(Ok) >_ Pthresh 
then affect the name Ok to the corresponding fold 
else 
affect unknown name to the corresponding fold 

Results for the identification of 4 brains are shown on figure 2. Almost all 
parts of superior, middle and inferior frontal sulcus are correctly identified. Only 
a few small portions of the central, precentral and postcentral sulci are incor- 
rectly identified. This of course has to be interpreted with the caveat tha t  the 
anatomist 's  labeling may not be correct for secondary or ter t iary sulci. 

6 C o n c l u s i o n  

The used of spatial priors to identify cortical sulci has been shown to give a very 
promising initial guess on the labeling of the main cortical sulci. This illustrates 
an application of the probabilistic atlas paradigm. When extended to all cortical 
sulci, the use of spatial priors allows to give a vector of initial probabilities for 
each possible sulcus name for each cortical fold. Even if the simple sulcus name 
assignment we have presented based on maximum of probability of sulcal spatial 
distributions will not be always sufficient to give an exact labeling (due to the 
density and high variability of sulcal pattern),  this methodology considerably 
decreases the state space of the sulcus recognition problem and gives an initial- 
ization for a more complex structural probabilistic matching algorithm which 
could include knowledge on the most likely structural pat tern  for each cortical 
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fold or knowledge on admissible sphape deformations [25]. We are now working 
on the design of such an algorithm. 
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F i g .  2. f rom top  to b o t t o m  : 5 different subjects ,  l e f t  : a u t o m a t i c  label ing using spat ia l  
priors,  r i g h t  : associa ted m a n u a l  labeling by an  ana tomis t ;  m a g e n t a  : cent ra l  sul.; 
red : sy lv ian  fiss.; f r o n t a l  l o b e  : ye l low:precentra l  s.; mus t a rd :  super ior  frontal  s.; 
red  : middle  frontal  s.; violet : inferior fi'ontal s.; green  : a.scending r am us  of the  syl. 
fiss.; a n t e r o - i n f e r i o r  p a r t  o f  t h e  f r o n t a l  l o b e  : yellow : hor izonta l  r a m u s  of the  
syl. fiss.; green : i n t e rmed ius  f ronto-orbi ta l  s.; b lue : lateralis front .-orb,  sul.; p a r i e t a l  
l o b e  : blue : pos tcen t ra l  s.; green  : i n t r apa r i e t a l  s.; black : unknown;  (note that the 
brain model, displayed at 50N of its original size, is only used to figure the orientatzon) 


