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Abstract. We describe a method for labelling image structure based on scale- 
orientation signatures. These signatures provide a rich and stable description of 
local structure and can be used as a basis for robust pixel classification. We use a 
multi-scale directional recursive median filtering technique to obtain local scale- 
orientation signatures. Our results show that the new method of representation is 
robust to the presence of both random and structural noise. We demonstrate ap- 
plication to synthetic images containing lines and blob-like features and to mam- 
mograms containing abnormal masses. Quantitative results are presented, using 
both linear and non-linear classification methods. 

1 Introduction 

We are interested in labelling important structures in images. We assume that the posi- 
tion of  these structures is unpredictable and that they will be embedded in a background 
texture. Real examples of  this class of  problem are ariel images - containing structures 
of  interest such as roads, rivers and trees, and medical images containing blood vessels, 
ducts and focal abnormalities (e.g. tumours). 

We describe an approach based on the construction of  a scale-orientation signature 
at each pixel. This provides a very rich description of  local structure which is robust 
and locally stationary. Given this description, standard statistical classification methods 
can be used - we give results for both linear and non-linear approaches for synthetic and 
real medical data. 

2 Scale-Orientation Signatures 

The Recursive Median Filter (RMF) is one of  a class of  filters, known as sieves, that 
remove image peaks or troughs of  less than a chosen size [1 ]. They are closely related 
to morphological operators [8]. By applying sieves of  increasing size to an image, then 
taking the difference between the output image from adjacent size sieves, it is possible 
to isolate image features of  a specific size. Sieves have been shown to have desirable 
properties when compared to other methods [4] of  constructing a scale space [2]. In 
particular the results at different positions on the same structure are similar (local sta- 
tionarity) and the interaction between adjacent structures is minimised. 
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2.1 Describing Local Structure 

For 2-D images, a I -D RMF can be applied at any chosen angle, by covering the image 
with lines at this angle, ensuring that every pixel belongs to only one line. By per- 
forming I-D Directional Recursive Median Filtering (DRMF) at several orientations, a 
scale-orientation signature can be built for each pixel. The signature is a 2-D array in 
which the columns represent measurements for the same orientation, the rows represent 
measurements for the same scale, and the values in the array represent the change in 
grey-level at the pixel, resulting from applying a filter at the scale and orientation corre- 
sponding to the position in the array. The grey-level changes are measured with respect 
to the image filtered at the next smaller scale at the same orientation. 

Fig. 1 shows scale-orientation signatures for pixels located on synthetically gener- 
ated structm'es. For instance, the response o f  the DRMF to a binary blob will result in a 
signature which has values at only one scale and is equal for all orientations (Fig. I a). 
For a binary line the resulting signature is highly scale and orientation dependent, with 
the minimum scale related to the width of  the line, and the maximum scale related to the 
length of  the line (Fig. I b). When the structures get more realistic, such as the Gaussian 
lines and blobs shown in Fig. 1 c and d, the signatures become slightly more compli- 
cated, but the overall shape remains similar. For blob-like structures the centre pixel 
gives a very characteristic signature, where the scales at which information is present 
in the signatures are related to the diameter of  the structure. This is also true for pixels 
on the backbone of  linear structures, for which the minimum scale in the signatures is 
related to the width of  the linear structure, the maximum scale related to length, and 
the orientation at which this maximum occurs indicates the direction of  the linear struc- 
ture. Although the signatures for non-centre pixels are not identical they are usually 
very similar (compare the columns of  signatures for each structure in Fig. 1). This local 
stationarity property is useful for pixel classification. The largest differences occur for 
the blob-like structures - there is a continuous change between the signatures from the 
centre of  the blob-like structure to the extreme edge with small changes for pixels near 
the centre and relatively large changes towards the edge of  the structure. 

Fig. 1. Some synthetic examples of multi-scale DRMF signatures, where the larger four images 
show (a) a binary blob, (b) a binary linear structure, (c) a Gaussian blob and (d) a Gaussian linear 
structure. The twelve smaller images are the scale-orientation signatures for the centre pixel (top), 
for a pixel at the extreme edge of the structure (bottom) and for a pixel in between these two 
extremes (middle). In the smaller scale-orientation signature images, scale is on the vertical axis 
(with the finest scale at the bottom) and orientation on the horizontal (the background grey-level 
is zero, i.e. only positive values are present in the DRMF signatures). 
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2.2 Noise Aspects 

To show the effects of noise some example structures and scale-orientation signatures 
are shown in Fig. 2. The signal to noise ratio (SNR) is increased from left to right 
from infinite (i.e. no noise present) to 25%. It is clear that the signatures remain stable 
for signal to noise ratios larger than 0.5. but even below this value certain features in 
the signatures remain stable, with a band of values across all orientations between two 
distinct scales. Also note that in the noisy signatures a substantial change occurs at the 
smaller scales, which are characteristic of the noise that is present in the images. This 
behaviour of the scale-orientation signatures in the presence of noise, together with the 
effect shown in Fig. 1, makes it possible to obtain robust classification of pixels. 

Fig. 2. Some synthetic examples of multi-scale DRMF signatures to indicate the effect of noise 
on the scale-orientation signatures (the same format as in Fig. 1 is used and only the signature for 
the centre pixel is shown) ,where the signal to noise ratio is c~ (a), 1.0 (b), 0.5 (c) and 0.25 (d). 

3 Statistical Modelling 

A brief description of the linear and non-linear modelling techniques used in our exper- 
iments are discussed in this section. 

3.1 Principal Component Analysis 

Principal component analysis (PCA) is a well documented statistical approach to data 
dimensionality reduction [3]. The principal components of a population of observation 
vectors are the characteristic vectors of the covariance matrix (C) constructed from the 
population. Projecting the data into its principal components generally results in a com- 
pact and meaningful representation in which the first few characteristic vectors describe 
the major modes of data variation. The characteristic values provide the variances of 
the principal components. Data dimensionality reduction is achieved by ignoring those 
principal components which have zero or small characteristic values. 

3.2 Linear Classification 

The objective of the work is to classify pixels, that is to label each pixel as belonging 
to a certain type of image structure. Since any method is likely to be imperfect it is 
useful to explore a range of compromises between false negative errors (poor sensitiv- 
ity) and false positive errors (poor specificity). This can be achieved conveniently by 
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constructing a probability for each pixel. The starting point is an observation vector, xi, 
for each pixel i, describing properties relevant to the classification task. For each class, 
cvj (e.g. normal or abnormal), the mean, na~ ,  and covariance, (J~y, of the observation 
vectors is estimated from a training set of signatures in which every pixel has been an- 
notated with the appropriate class by an expert. The probability density of obtaining an 
observation vector xi for a pixel of class ~vj is given by p(xit~vj) which can be calcu- 
lated from nau~ and C~j assuming a Gaussian distribution. Applying Bayes theorem, 
a probability image for class ~vj (e.g. abnormal) is found by calculating, for each pixel 
P(~vj Ixi). Detection can be performed by thresholding the resulting probability image. 
Different values of the threshold will result in different compromises between true pos- 
itive and false positive errors. The detection performance as the threshold is varied can 
be summarised conveniently using Receiver Operating Characteristic (ROC) curves [5]. 

3.3 Non-Linear Classification 

To assess the non-linear aspects of the scale-orientation signatures a basic back-pro- 
pagation artificial neural network (ANN) was used [6]. The same network was used 
in all experiments. The architecture comprised an input layer of the 132 components 
(12 orientations • 11 scales) of the the scale-orientation signatures, two hidden layers 
and the output layer comprising three units for the synthetic data and two units for the 
mammographic data (these numbers were used to obtain a direct comparison with the 
linear classification which provides three and two class probabilities, respectively). The 
network was fully connected between the second hidden layer (10 units) and both the 
output layer and the first hidden layer (23 units). The connections between the input 
layer and the first hidden layer were, however, more restricted. The information from 
one scale (summed across all orientations) or one orientation (summed across all scales) 
was connected to each of the units of the first hidden layer. 

4 Test Data 

To assess the potential of the scale-orientation signatures for the classification of struc- 
tures in images two different datasets were used: one synthetic, the other derived from 
real mammographic data. In both cases the datasets were divided into three equal sized 
subsets - facilitating a training, validation (only used for the non-linear classifier) and 
test set. 

The synthetic data consisted of three separate datasets of 12288 scale-orientation 
signatures each (see Fig. 2d for a typical example). Each dataset contained equal num- 
bers of signatures obtained from Gaussian linear structures, Gaussian blob-like struc- 
tures and texture background (which was based on a combination of  Gaussian and shot 
noise). The signatures were extracted from the top 5% of brightest pixels (before noise 
was added) from 768 images. All the samples were given class expectation values which 
could be used to determine the mean square error for a certain network. 

The second dataset used in our experiments was drawn from mammograms. The sig- 
natures were extracted from 54 mammograms of which half contained an abnormality (a 
spiculated lesion). The available data was separated into three datasets, each comprising 
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signatures from 18 mammograms. The resulting mammographic data comprised three 
separate datasets of 2700 scale-orientation signatures, each containing equal numbers 
of "normal" and "abnormal" signatures. The "abnormal" signatures were taken from 
the annotated central mass while the "normal" signatures were randomly selected from 
the normal mammograms. 

5 Classification of Synthetic Data 

We present results for classifying the synthetic data into three classes, using both linear 
and non-linear classifiers. 

A principal component model was trained for every synthetic training data set. The 
first five principal components cumulatively explained approximately 49%, 60%, 64%, 
69% and 73% of the training set variance respectively. A linear classifier was used to 
classify each signature in the datasets as belonging to the class of linear structure, blob- 
like structure or the texture background as described in Sec. 3.2. This information was 
used to obtain class probabilities. 

For this data the ANN had three output neurons for the three classes; linear struc- 
tures, blob-like structures and background texture. The class expectation values used 
were 0.90 for class samples and 0.05 for non-class samples. The three expectation val- 
ues were thus directly comparable to the probabilities obtained using a linear classifier 
with their sum equal to 1.0. The optimal network was found (as described in Sec. 3.3) 
and used to obtain the expectation values which were used for classification of the data. 

Classification accuracy was assessed by producing ROC curves as shown in Fig. 3. 
There is no difference between the use of the full scale-orientation signature and the re- 
duced dimensionality representation. A sensitivity of 80% is obtained at a false positive 
rate of 0.15. 
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Fig. 3. Synthetic signature classification results for linear classification (A), PCA model based 
linear classification (O) and non-linear classification (O). 
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The ANN performs almost perfect classification which compares very favourable 
with the linear classifier. 80% sensitivity is achieved at a false positive rate of 0.000013 
and 98% sensitivity at 0.00005. 

6 Classification of Mammographic Data 

The classification of the mammographic data is into two classes, either abnormal mass 
or non-mass. Again both classification based on linear and non-linear methods are in- 
vestigated and compared. In addition, application of the approach to images is dis- 
cussed, with a typical example illustrating the differences in results leading to free re- 
sponse operating characteristic (FROC) curves and the number of false positives as a 
function of probability threshold. 

A principal component model was trained on the mammographic data (individual 
results for the three datasets were similar). The first five principal components c u m u -  

latively explained approximately 31%, 49%, 57%, 62% and 66% of the training set 
variance respectively. A linear classifier was used to classify pixels as mass/non-mass. 
The resulting ROC curves are shown in Fig. 4, indicating the effect of using the full 
signatures or the first 17 principal components (using the principal component model to 
explain 85% of the variation in the data) in the dataset. Using the full signatures, slightly 
worse results are obtained. For the results based on the first 17 principal components a 
sensitivity of 80% is obtained at a false positive fraction of 0.25. 
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Fig. 4. Mammographic signature classification results for linear classification (A), PCA model 
based linear classification (D) and non-linear classification tO). 

In this case the ANN had two output neurons for the two classes, mass and non- 
mass. Again, every sample was given class expectation values. In this case 0.9 for mass 
samples and 0.1 for non-mass samples. The same approach as in Sec. 5 was followed 
to obtain ROC curves. The results are shown in Fig. 4 which show that a sensitivity of 
80% was achieved at a false positive rate of  0. I 0. 
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6.1 Region Classification 

An example of  a spiculated lesion with central mass is shown in Fig. 5a. A class proba- 
bility image resulting from the full scale-orientation signatures and a linear classifier is 
shown in Fig. 5b, results from the first 17 principal components and a linear model are 
shown in Fig. 5c, and from he non-linear classifier in Fig.5d. This shows that the mass 
is detected by all three approaches. It should be noted that the area (i.e. the region of 
pixels) detected has an improved overlap with the annotated region when going from 
full signature linear model (Fig. 5b), principal component linear model (Fig. 5c) to full 
signature non-linear model Fig. (5d). 

Fig. 5. Example of applying the linear and non-linear classification approach to a section of a 
mammogram. (a) original mammogram (b) original mammogram with central mass and spicules 
annotated (c) full signature linear classification probability image (d) first 17 principal component 
based linear classification probability image (e) non-linear classification probability image. 

The class probability images where obtained for all the mammograms  in dataset. 
Region classification (region size equal to 10 mm) was based on these images and 
results are shown in Fig. 6. At a sensitivity of  80% the number of  false positives per 
image reduces from 7.5 for linear classification to 3.2 for non-linear classification. 
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Fig.6. FROC mammographic region classification results for linear classification (A), PCA 
model based linear classification (r-n) and non-linear classification (O). 
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7 Discussion and Conclusions 

We have described a principled method for the classification of pixels based on scale- 
orientation signatures which provide a compact description of local structure. Linear 
and non-linear aspects of scale-orientation signatures can be used for the labelling of 
structures in images. It is possible to classify pixels into several classes such as linear 
structures, blob-like structures or background texture. 

For the synthetic data sets the results obtained using the ANN are considerably 
better for unseen data than the classification using a linear approach implying better 
generalisation. At a sensitivity of 80% the false positive rate reduces from 0.15 for the 
linear method to 0.000013 for the ANN. 

When comparing the linear and non-linear classification results for the mammo- 
graphic data it is clear that allowing for non-linear behaviour of the scale-orientation 
signatures provides as overall improvement. At a sensitivity of 80% the false positive 
rate improved from 0.25 to 0.10. When applied to images the results show an overall 
better performance for the non-linear modelling approach. For region classification at 
a sensitivity of 80% the number of false positives per image reduces from 7.5 for lin- 
ear classification to 3.2 for non-linear classification. These results are comparable with 
methods presented in the literature [7, 9]. 

Results for both synthetic and mammographic data indicate that the non-linear as- 
pects of the scale-orientation signatures provide additional information which improves 
the classification results. Using the non-linear technique described the detection of spic- 
ulated lesions is improved. 

The approaches described for the classification of structures in images could be 
improved by the normalisation of the scale- orientation signatures to provide a better 
classification of the various structures, although some specificity may be lost. 
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