Abstract
Various linear methods have been proposed to localize brain activity from external electromagnetic measurements. When interpreting the estimated spatiotemporal localizations, one must consider the spatial resolution of the particular approach. Locations with high spatial resolution increase the confidence of the estimates, whereas locations with poor resolution provide less useful localization estimates. We describe a “crosstalk” metric which provides a quanitative measurement of distortion at a given location from other locations within the brain. Crosstalk maps over the entire cortical surface provide a useful visualization of the spatial resolution of the inverse method.
Chapter PDF
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Backus, G.E., F. Gilbert: Geophysical Journal of the Royal Astonomical Society. 16 (1968) 169–205
Backus, G.E., F. Gilbert: Philosophical Transactions of the Royal Society of London A. 266 (1970) 123–192
Dale, A.M.: Source Localization and Spatial Discriminant Analysis of Event-Related Potentials: Linear Approaches. Ph.D. Thesis UCSD (1994).
Dale, A.M., M.I. Sereno: Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: A linear approach. J. Cog. Neurosci. 5 (1993) 162–176
de Munck, J.C.: A linear discretization of the volume conductor boundary integral equation using analytically integrated elements. IEEE Trans. Biomed. Eng. 39 (1992) 986–990
Deutsch, R.: Estimation Theory. Prentice Hall Englewood Cliffs, NJ (1965)
Gelb, A.: Applied Optimal Estimation. MIT Press, Cambridge (1974).
Grave de Peralta Menendez, R., S. Gonzalez Andino, B. Lutkenhoner: Figures of merit to compare linear distributed inverse solutions. Brain Topography. 9 (1996) 117–124
Hamalainen, M., R. Hari, R.J. Ilmoniemi, J. Knuutila, O.V. Lounasmaa: Magnetoencephalography — theory, instrumentation, and application to noninvasive studies of the working human brain. Review of Modern Physics. 65 (1993) 413–497
Hamalainen, M.S., R.J. Ilmoniemi: Interpreting measured magnetic fields of the brain: estimates of current distributions. Helsinki Univ. of Technology Helsinki, Finland (1984)
Hamalainen, M.S., J. Sarvas: Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data. IEEE Trans. Biomed. Eng. 36 (1989) 165–171
Helmholtz, H.: Ueber einige Gesetze der Vertheilung elektrischer Strome in korperlichen Leitern, mit Anwendung auf die thierisch-elektrischen Versuche. Ann. Phys. Chem. 89 (1853) 211–233, 353–377
Ilmoniemi, R.J.: Magnetoencephalography-A tool for studies of information processing in the human brain. In: Lubbig, H. (ed.): The Inverse Problem. Akademie Verlag, Berlin (1995) 89–106
Knuutila, J.E.T., A.I. Ahonen, M.S. Hamalainen, M.J. Kajola, P.O. Laine, O.V. Lounasmaa, L.T. Parkkonen, J.T.A. Simola, C.D. Tesche: A 122-channel whole-cortex squid system for measuring the brains magnetic fields. IEEE Trans. Magn. 29 (1993) 3315–3320
Lutkenhoner, B., R. Grave de Peralta Menendez: The resolution-field concept. EEG and Clin. Neurophysiol. 102 (1997) 326–334
Menke, W.: Geophysical Data Analysis: Discrete Inverse Theory. Academic Press San Diego, CA (1989)
Nunez, P.L.: Electric fields of the brain. Oxford University Press New York (1981)
Oostendorp, T.F., A. van Oosterom. “Source parameter estimation using realistic geometry in bioelectricity and biomagnetism.” Biomagnetic Localization and 3D Modeling, Report TKK-F-A689. Nenonen, Rajala and Katila ed. Helsinki University of Technology. Helsinki. (1992)
Pascual-Marqui, R.D., C.M. Michel, D. Lehmann: Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Inter J Psychophysiology. 18 (1994) 49–65
Plonsey, R.: Bioelectric Phenomena. McGraw-Hill, New York (1969)
Sereno, M.I., A.M. Dale, J.B. Reppas, K.K. Kwong, J.W. Belliveau, T.J. Brady, B.R. Rosen, R.B.H. Tootell: Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science. 268 (1995) 889–893
Tichonov, A.N., V.Y. Arsenin: Solutions of ill-posed problems. Winston, English translation by F. John Washington D.C. (1977)
Tootell, R.B.H., J.D. Mendola, N.K. Hadjikhani, P.J. Ledden, A.K. Liu, J.B. Reppas, M.I. Sereno, A.M. Dale: Functional analysis of V3A and related areas in human visual cortex. J Neuroscience. 17 (1997) 7060–7078
Wang, J.-Z., S.J. Williamson, L. Kaufman: Magnetic source images determined by a lead-field analysis: the unique minimum-norm least-squares estimation. IEEE Trans.Biomed.Eng. 39 (1992) 665–675
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Liu, A.K., Belliveau, J.W., Dale, A.M. (1998). Visualizing spatial resolution of linear estimation techniques of electromagnetic brain activity localization. In: Wells, W.M., Colchester, A., Delp, S. (eds) Medical Image Computing and Computer-Assisted Intervention — MICCAI’98. MICCAI 1998. Lecture Notes in Computer Science, vol 1496. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0056253
Download citation
DOI: https://doi.org/10.1007/BFb0056253
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-65136-9
Online ISBN: 978-3-540-49563-5
eBook Packages: Springer Book Archive