Abstract
Registration error resulting from intraoperative brain shift due to applied surgical loads has long been recognized as one of the most challenging problems in the field of frameless stereotactic neurosurgery. To address this problem, we have developed a 3-dimensional finite element model of the brain and have begun to quantify its predictive capability in an in vivo porcine model. Previous studies have shown that we can predict the average total displacement within 15% and 6.6% error using intraparenchymal and temporal deformation sources, respectively, under relatively simple model assumptions. In this paper, we present preliminary results using a heterogeneous model with an expanding temporally located mass and show that we are capable of predicting an average total displacement to 5.7% under similar model initial and boundary conditions. We also demonstrate that our approach can be viewed as having the capability of recapturing approximately 75% of the registration inaccuracy that may be generated by preoperative-based image-guided neurosurgery.
Chapter PDF
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
D. W. Roberts, J. W. Strohbehn, J. F. Hatch, W. Murray, and H. Kettenberger, ‘A frameless stereotactic integration of computerized tomographic imaging and the operating microscope’, J. Neurosurg., vol. 65, pp. 545–549, 1986.
T. Peters, B. Davey, P. Munger, R. Comeau, A. Evans, and A. Olivier, ‘Three-dimensional multimodal image-guidance for neurosurgery’, IEEE Trans. Med. Imaging, vol. 15, pp. 121–128, 1996.
D. W. Roberts, A. Hartov, F.E. Kennedy, M. I. Miga, K. D. Paulsen, ‘Intraoperative brain shift and deformation: a quantitative clinical analysis of cortical displacements in 28 cases’, Neurosurgery, (in press), 1998.
D. L. G. Hill, C. R. Maurer, M. Y. Wang, R. J. Maciunas, J. A. Barwise, J. M. Fitzpatrick, ‘Estimation of intraoperative brain surface movement’, Proc. CVRMed-MRCAS’97, ed. J. Troccaz, E. Grimson, R. Mosges, Springer Lecture Notes in Computer Science, vol. 1205, pp. 449–458, 1997.
H. Dickhaus, K. Ganser, A. Staubert, M. M. Bonsanto, C. R. Wirtz, V. M. Tronnier, and S. Kunze, ‘Quantification of brain shift effects by mr-imaging’, Proc. An. Int. Conf. IEEE Eng. Med. Biology Soc., 1997.
M. I. Miga, K. D. Paulsen, F. E. Kennedy, P. J. Hoopes, A. Hartov, and D. W. Roberts, ‘A 3D brain deformation model experiencing comparable surgical loads’, Proc. 19th An. Int. Conf. IEEE Eng. Med. Biology Soc., 773–776, 1997.
K. D. Paulsen, M. I. Miga, F. E. Kennedy, P. J. Hoopes, A. Hartov, and D. W. Roberts, ‘A computational model for tracking subsurface tissue deformation during stereotactic neurosurgery’, IEEE Transactions on Biomedical Engineering, (in press), (1998).
M. I. Miga, K. D. Paulsen, F. E. Kennedy, P. J. Hoopes, A. Hartov, and D. W. Roberts, ‘Quantification of a 3D brain deformation model experiencing a temporal mass expansion’, Proceedings of the 24th IEEE Northeast Bioengineering Conference, pp. 68–71, 1998.
M. Biot, ‘General theory of three dimensional consolidation’, J. Appl. Phys., vol. 12, pp. 155–164, 1941.
M. I. Miga, K. D. Paulsen, F. E. Kennedy, ‘Von Neumann stability analysis of Biot’s general two-dimensional theory of consolidation’, Int. J. of Num. Methods in Eng., (in press), 1998.
E. K. Walsh, and A. Schettini, ‘Calculation of brain elastic parameters in vivo’, Am. J. Physiol., 247, R693–R700, 1984.
R. Mathupillai, P. J. Rossman, D. J. Lomas, J. F. Greenleaf, S. J. Riederer, and R. L. Ehman, ‘Magnetic resonance elastography by direct visualization of propagating acoustic strain waves’, Science, vol. 269, pp. 1854–1857, 1995.
M. I. Miga, K. D. Paulsen, F. E. Kennedy, P. J. Hoopes, A. Hartov, and D. W. Roberts, ‘Modeling Surgical Loads to Account for Subsurface Tissue Deformation During Stereotactic Neurosurgery’, IEEE SPIE Proceedings of Laser-Tissue Interaction IX, Part B: Soft-tissue Modeling, vol. 3254, pp. 501–511, 1998.
T. Nagashima, T. Shirakuni, and S. I. Rapoport, ‘A two-dimensional, finite element analysis of vasogenic brain edema,’ Neurol. Med. Chir., vol. 30, pp. 1–9, 1990.
P. J. Basser, ‘Interstitial pressure, volume, and flow during infusion into brain tissue’, Microvasc. Res., vol. 44, pp. 143–165, 1992.
C. Montani, R. Scateni, and R. Scopigno, ‘Discretized Marching Cubes Visualization 1994’, Conf. Proc., Washington, 1994.
J. M. Sullivan Jr., G. Charron, and K. D. Paulsen, ‘A three dimensional mesh generator for arbitrary multiple material domains, Finite Element Analysis and Design, vol. 25, pp. 219–241, 1997.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Miga, M., Paulsen, K., Kennedy, F., Hoopes, J., Hartov, A., Roberts, D. (1998). Initial in-vivo analysis of 3D heterogeneous brain computations for model-updated image-guided neurosurgery. In: Wells, W.M., Colchester, A., Delp, S. (eds) Medical Image Computing and Computer-Assisted Intervention — MICCAI’98. MICCAI 1998. Lecture Notes in Computer Science, vol 1496. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0056261
Download citation
DOI: https://doi.org/10.1007/BFb0056261
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-65136-9
Online ISBN: 978-3-540-49563-5
eBook Packages: Springer Book Archive