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Abs t rac t .  Biological shape differences often are represented as diffeo- 
morphisms of a Cartesian coordinate grid. This paper suggests that their 
spatially discrete, localized features, for instance the details that suggest 
underlying developmental or pathological processes, can often be iden- 
tified with variants of the singularity (x,y) ~ (x,x2y + y~). This is an 
unfamiliar singularity, generic of codimension 1, at which a pair of cusps 
appears as a function of a parameter for "extrapolation." I introduce 
canonical coordinates for such singularities and show how they may be 
used to produce objective reports of grids encountered in an empirical 
context. An example is shown involving the corpus callosum in Fetal Al- 
cohol Syndrome. These features appear to be robust under relaxation of 
bending energy against Euclidean distance, the analogue to multiscale 
analysis for discrete punctate data. 

1 I n t r o d u c t i o n  

In the rapidly growing literature of image analysis of the whole human  brain, two 
principal methodological themes are object detection and visualization by defor- 
mation grid. The "objects" may be segmented regions (ventricle, hippocampus,  
tumor)  from an anatomical  image, or perhaps "hot spots" of metabol ism exceed- 
ing baseline in a contrast of functional images. Deformations may  be from atlas 
to patient, between different images of the same patient (pre- to intraoperative, 
or MR to PET) ,  or, as will be the case in this paper, between averages of classes 
of patients whose contrast is impor tant  for scientific understanding of the causes 
and concomitants of anatomical  anomalies. Yet our literature has not paid much 
attention to the interrelation of these two themes. Displacement and deforma- 
tion grids have typically not been searched for focal features in the same way 
that  the raw anatomical  or functional images have been, and reports of features 
of deformation, whether focal or global, are typically not filtered through the 
multiscale machinery so fruitful in the contemporary methodologies of object 
detection for structural images and functional contrasts. 

The present paper  suggests a technique for bridging this gap: a method for 
finding focal features of deformation or displacement grids that  is consistent with 
a multiscale approach and also with the existing biometric machinery for causes 
and effects of shape. Section 2 introduces u parametr ic  templa te  for such features, 
the crease singularity, and Section 3 shows how it is produced when empirical 
deformations are extrapolated to high multiples. Section 4 applies the method 
to an instructive example from the neuroanatomy of Fetal Alcohol Syndrome, 
an irreversible but somewhat  cryptic structural-behavioral  disorder, and Section 
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5 shows a multiscale extension that  supports a useful statistical significance test 
for findings like these. 

2 The basic singularity 

Consider the deformation function at right in Figure 1. (Note that  the scales of 
the axes here are unequal.) This figure is a transformation of originally square 
Cartesian axes according to the composition of three functions. Two are uninter- 
esting: the map (x, y) --4 (x - 2y 2, y), which bends lines x = c into parabolas of 
vertical vertex tangent, and the map (x, y) -4 (x + 8y, y), which imposes a shear 
along the x-axis. The core of the transform, however, is quite interesting: the map 
(z, y) --4 (z, z2y + y3), at the left in the figure, with that curious singularity at 
(0, 0). The generic singularities of maps R 2 -+ R 2 are folds and cusps (Whitney's 
theorem [1]) having canonical forms (z, y) --+ (x, y2) and (x, y) --+ (z, xy  + y3), 
respectively. Clearly the singularity here is neither of these. Lines y = c are trans- 
formed here into a nested family of parabolas cx 2 + c 3 whose spacing shrinks 
faster than curvatures as they approach the real axis. In both panels of the fig- 
ure, the heavy line is the image of the original locus z = 0. Its singularity is 
concealed on the lef t-- i t  falls to speed zero as it traverses the axis--but ,  un- 
folded on the right, we can see how when symmetry is broken this meridian can 
change direction there. 
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(x,y)->(x,x^2y+y~3) 
-0.2 -0.1 0.0 0.1 0.2 

x'=x-2y"2, (x,y)->[x+8y,y]{(x',x'^2y+y~3)} 

F i g u r e  1. The basic singularity and a generalization. 

Nongeneric singularities can be usefully approached as limiting cases of generic 
ones. In the present instance, the map (x, y) -+ (x, x~y + y3) can be viewed as 
the limit as a --4 0 of maps (x ,y)  ~ (z, (x 2 - a ) y + y 3 ) ,  Figure 2. For a > 0, each 
of these has two ordinary cusps at =t=x/a. The Jacobian of the map is negative in 
the lip-shaped region between the cusps. As a passes through 0, the two cusps 
momentari ly fuse in our higher-order singularity, then vanish. 

3 How these arise in data 

The manner in which singularities like these arise as descriptors of biological 
shape phenomena is, needless to say, not as the limit of the parametrized map- 
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pings in Figure 2. Realistic maps of one biological form onto another do not have 
cusps or folds. Instead, our singularity is encountered when realistic deformations 
are extrapolated to arbitrarily high multiples. 

-0,2 -0.1 0.0 0.1 0,2 -0.2 -0.1 0.0 0,1 0.2 
(x,y)->((x^2-a)y+yA3), a=.02>O, two cusps a=-.02<O, no singularity 

F i g m ' e  2. Limit of paired cusps: (x, y) --+ ((x 2 - a)y + ya, y) for a near 0. 

The maps we are exploring arise as expressions of statistical contrasts cor- 
responding to a variety of applied biometric questions, such as dimensions of 
greatest natural variations in shape or aspects of shape that optimally covary 
with exogenous causes or effects of shape. (The example here illustrates the sim- 
plest such context, the visualization of the difference between two group average 
shapes.) In this version of morphometrics, shape data  are formalized via or- 
dered n-tuples of landmark points in two- or three-dimensional Cartesian space. 
Landmark points, such as "bridge of the nose" or "tip of the chin," have oper- 
ational definitions permitting their location on specimens one by one but also 
are presumed to correspond on biological grounds across all the specimens of a 
sample. The shape of a set of landmarks is the equivalence class of their config- 
uration under the ordinary Euclidean similarity group of translations, rotations, 
and changes of scale. This space is a Riemannian manifold under the celebrated 
Procrustes metric, submersion of the original Euclidean sum-of-squares [2]. For 
the purpose of this paper, we are not interested in variation of specimens within 
samples, but restrict our attention to representations of group average shapes, 
where the "average" is the form of least summed squared Procrustes distance to 
all the forms of the subsample. The computational geometry of the Procrustes 
methods has been reviewed elsewhere [3]; its details are not important  for the 
analysis of singularities to follow. 

Rather more important  is the algebra of the thin-plate splines that  we use 
for smooth interpolation between different shapes, such as averages of different 
subgroups of one data  set. This formalism has appeared many times previously 
[3,4]. For the equations to follow we borrow the standard notations: L is the 
bordered kernel matrix, H is the vector of target landmark coordinates with 
three zeroes appended, L-1H is the vector of spline coefficients, and L~ -1 is the 
quadratic form for bending energy. 

The spline helps visualize statistical summaries based in these Procrustes co- 
ordinates in a remarkably effective manner. Any vector computed in the course 
of a multivariate analysis--a mean difference, for example--can be visualized 
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as a deformation in this way. That the double integral of second derivatives is 
minimized means that the spline fits shape changes with the smallest possible 
variation of affine derivative (shapes of the little grid cells in these figures). If 
a given change of affine derivative can be managed over a larger interval, its 
contribution to the integral of squares is lower; hence the spline tries to repre- 
sent deformations "as globally as possible." Global features of such changes are 
plainly visible in the grids without further parameterization. Furthermore, be- 
cause the spline's coefficients L - 1 H  are linear in H, the deformed configuration, 
we can unambiguously construct an a-fold extrapolation (magnification) of the 
map $1 --+ $2 as the map $1 ~ Sj  + a(S2 - Sj). 

F igure  3. A two-group contrast (FAS average at top right) with ordinary (mid- 
dle row) and affine-free (bottom row) extrapolates, a, left to right: 1,3,7. 

4 A n  i n s t r u c t i v e  e x a m p l e  

Figure 3 shows, in the upper row, landmark-registered mean images from mid- 
sagittal brain MR for 4 adults with Fetal Alcohol Syndrome (FAS) and 8 persons 
not so affected. (Fetal Alcohol Syndrome is an irreversible process of prenatal 
brain damage discovered in 1973 and known to be caused by exposure to very 
high levels of alcohol early in fetal life.) At center left in the figure is the de- 



792 

formation grid from left to right mean landmark configuration. In the bright 
white curving arch (center of the raster images, from left to top of the punctate 
diagrams) is the corpus callosum, the principal conduit of information between 
the cerebral hemispheres; cerebellum is at the lower right. The left part of the 
callosum is called "genu"; the bulb at the right, "splenium"; the narrowing just 
to its left, "isthmus." 

F i g u r e  4. Zooming in on the singularity in genu, at two different scales, a, top 
to bottom, left to right: 1, 4, 5, 4, 4.5, 5. 

The grid at center left in Figure 3 is obviously not affine, but it is difficult to 
put into words exactly what it is instead. Across the middle row of the figure are 
extrapolations of this transformation by factors of 3 and then 7. The bending is 
becoming more patent, but the collapsing of the shape at large extrapolations 
is interfering with our understanding. In the lower row we apply an elementary 
stratagem from the contemporary morphometric toolkit, removing the affine 
term by linear projection in the Procrustes geometry [3,5]. Now it is clear that  
there is an extended extremum of hypoplasia (compression) across the entire 
length of the corpus callosum. Somewhere between the threefold extrapolation 
and the sevenfold, the deformation goes singular in two different regions. 

Figure 4 enlarges regions around genu near the extrapolation at which the 
singularity appears. In the top row are shown the actual deformation of the 
region in question and also multiples of the original transformation by four and 
by five; the singularity appears somewhere in between. In the lower row, a further 
enlargement localizes the singularity quite near the multiple of 4.5. The higher 
extrapolation at lower right shows the expected paired-cusp structure. 

Something here is not yet as symmetrical as it might be. In the lower left 
panel of Figure 4, count down about eight grid lines on the left and the right 
margins of the little grid cell. You will find that their images are not aligned-- 
none of the grid lines drawn appear to be transversals of the singularity. We 
can make this a bit clearer, Figure 5, by rotating the data  through a range of 
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orientations with respect to the starting grid. At some orientations, lines slew 
upward along the singularity; at others, they slew downward. There is thus some 
orientation along which they do not slew at all, the orientation exploited at right 
in the figure. Here grid lines approximate a proper corner where they cross the 
tangent to the singularity just upstream or just downstream. 

 lilt  . . . . .  

Figure  5. Rotating the starting grid through the singularity (a = 4.5). 

What is the meaning of such a finding? I suggest that it constitutes a f ini te  
feature,  a salient organizing focus for description of the map in the large. Figure 
3, lower right, shows this interpretation quite clearly. We have located the center 
of horizontal compression of a vertically organized dysmorphogenic field that, 
extended, generates the cusp visible there right up to the boundaries of the next 
such structure (to be encountered in Figure 6). That the singularity appears 
at extrapolation 4.5 means that the largest compression in any direction is by 
I/4.5=22% of the original length, and the field of compression extends for a 
considerable distance upward from this feature. 

These grids look remarkably like the prototype I led you to expect (recall 
Figure 1). The parameters of one of these features total eight: location (two), 
direction of the axis of the singularity, angles between the tangent to the singular 
locus and the principal transversal at its "corner" (two), first derivative of the 
map in the tangent direction, second derivative in the transversal direction, and 
extrapolation a at which all this goes singular. 

This decomposition contrasts considerably with the existing methods for fea- 
ture extraction from deformations. The method of biorthogonal grids, for in- 
stance [7], computes principal strains of the affine derivative at every point, but 
its singularities are umbilics. It offers no formalism for finding the local extrema 
of strain rate analogous to the analysis here. And studies that compare areas or 
that search for sources, sinks, or peaks (cf. [6]) have hitherto been scalar-based, 
lacking the very important directional features of this parameterization. 

Returning to the full transformation, Figure 3 (lower right), let us track down 
the structure of the other salient compression, at its upper center. As Figure 
6 shows, this is a composite of two singularities at about the same maximal 
compression (-~ to -~) but different principal axes. In the rightmost of the two 
singularities, the corner of the transversal makes rather different angles with the 
tangent to the singularity on its two sides, as Figure 1 already prototyped (by 
shear along the tangent line). All along this arc of tissue (a histological locus, 
not a mathematical one), the average FAS ease falls short of normal by about 
1/5.5=18% in callosal thickness--that's a lot of neural tissue missing. The pair 
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of findings here owe to the same alcohol-induced dysmorphogenesis that  leads 
to the characteristic facial features by which FAS is diagnosed [8]. 

iImml 
o,~ o+ o~  .o+ ~ o~, o+  

ii+++,,+ 
F i g u r e  6. Near splenium, there are two more singularities, nearly collinear, a, 
top to bottom, left to right: 1, 4, 6, 5.5, 5.2, 6. 

iI+m 
+, +,~ 2.~.~++,.+ .+ ~ 

it+/il l 
+ +  + =  ~ 1 7 6  o+ o +  + +  + +  ~ ,  g o  *i+ *~, oi .  

F i g u r e  7. Negative extrapolation of the affine-free FAS grid shows two foci of 
expansion. ~, top to bottom, left to right: - 1 , - 5 , - 8 , - 7 , - 6 .  

To complete the analysis of this transformation, we need to look at the sin- 
gularities of the opposite transformation (negative extrapolations of the same 
map). Figure 7 shows that this transformation has two singularities of its own, 
rather close together, both of the same familiar structure. Because these are 
creases of the opposite map, they are local extrema of expansion, not compres- 
sion, of the original comparison; together they account for the great whitened 
area at the lower right in Figure 3. These loci of greatest expansion are both 
within the fluid compartment of this brain section, so the expansion does the 
victim of the syndrome no good at all. For other empirical examples, dealing 
with schizophrenia, see [9]. 
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5 R e l a x a t i o n  p r e s e r v e s  c r e a s e s  a s  f e a t u r e s  

As an exact interpolant, the thin-plate spline here tracks variation in a mapping 
function at all pertinent scales. This is not necessarily a virtue in a world where 
data incorporate noise right alongside signal. By trading imprecision for bending 
energy, the spline can be made more similar in spirit to other energy-based 
methods, regularized from the outset, that compromise a pictorial mismatch 
energy against a complexity cost. The following approach, for instance, has been 
developed twice before [10,11]. 

F i g u r e  8. The relaxation that smooths the grids does not alter the creases as 
features. Values of A: upper right, .005; lower row, .02, .01, .01. The analysis is 
of the nonattine signal only. 

In the notation introduced earlier, reorder the Cartesian coordinates of a set 
of k landmarks (Xi, Yi) as the 2k-vector V = (X1, X~,. . . ,  Xk, Y1,.. . ,  Yk) t. To 
relax a perturbed configuration Vp onto a standard configuration Vs, seek the 
configuration V~ that  minimizes the weighted sum of two energies. One term is 
the bending (V~ -V~)tBE(V~ -V~) of V~ considered as a deformation of the stan- 
dard form. (Here BE is the duplication diag(L~ -I, Lk 1) of the bending-energy 
matrix corresponding to V~.) The other term is "pictorial" energy, the sum-of- 
squares (V~ - Vp)t(V~ - Vp) that  corresponds to squared Procrustes distance 
between the relaxed landmark configuration V~ and the data  vector Vp actually 
encountered. In the references cited, there was also introduced a log-likelihood 
�89 - V~)t~- (V~ - V~), where ~ is a sample variance-covariance matrix, but 
we shall not need that third term here. 

For any relative weight A, we seek the relaxed configuration V~ that minimizes 
the weighted sum (V~ - Vp)t (V~ - Vp) + A (V,. - V~ )t B E (V~ - V~ ) of the two energies. 
Setting the gradient of this expression to zero straightforwardly leads to 

vr =__ vr(A) = (I2k + ABE)-I(  + ABE V,) . 
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As ), varies, Vr (~) traverses a smooth curve in the space of landmark configu- 
rations, the charmingly named curve d&olletage [10]. Note that  V~ (0) = Vp--in 
the absence of any penalty for deviation from the standard V,, the best fit to 
any data  is the selfsame data. In the other limit A --4 co, V~ tends to the con- 
figuration of zero bending having the least Euclidean cost: the best fit to the 
data  by an affine transform of the standard. Because BE is a function of Vs, 
this formulation is not symmetric in Vp and Vs. 

As t increases, naturally the transformation V8 -4 V~(I) moves closer to 
a uniform map. Its features, in the sense of this paper, may be restored by 
enhancing the extrapolation of maps Vs --4 Vr to compensate. (In effect we are 
following a curve in the two-dimensional "control space" parameterized by A 
and a(A).) From the sequence of just-creased maps that results I have extracted 
the examples in Figure 8 for your consideration. Clearly these comparisons are 
becoming steadily smoother as the value of A increases; but also, just as clearly, 
the creases that we found in Figure 3 are fairly stable against energy-driven 
smoothing as operationalized by the relaxation here. 

The last two frames of this figure suggest an appropriate statistical signifi- 
cance test for the effect claimed here. Over a range of spatial scales the deforma- 
tion appears to have two creases (at two different values of a) which together span 
nearly all of the callosal arc. Features like these are susceptible to permutation- 
based methods of statistical inference analogous to those now securely in place 
for global features [3]. Without  the need for any parametric modeling, we can 
test the claim of a significant difference between the FAS subset and the others 
by examining the distribution of analogous features, at values of c~ that  are no 
greater, when cases are permuted over group [12]. There are (12) ___ 495 permuted 
subsettings of this data set. In addition to the one given by the actual diagnosis, 
19 others show creasing along the callosum as extensive as we see here. Hence 
the significance level of the crease report here is 4%, precisely. 

6 F u t u r e  w o r k  

The visualizations and the computational geometry associated with the search 
for creases are at very early stages of development. The representations here 
were produced slowly and interactively by hand; we need very fast algorithms 
for locating these structures in real data  so that permutation-based statistical 
tests for reliability of these features can go forward in practical time. (The data  
set here is at the upper limit of size for which the enumeration of creased permu- 
tations is feasible by eye.) In addition to the crease singularity there are limiting 
cases of higher degeneracy [9] that  need parametric models. In three dimensions 
[13] the equivalent of the catastrophe here is the emergence of a pair of the 
equivalently isolated singularities, swallowtails, from a diffeomorphism. We have 
such a finding in 3D already (see the projected images in [141), but the para- 
metric template for the mapping is still obscure, and the interactive search for 
its features is a good deal more difficult than the equivalent in two dimensions. 
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