
Motion Measurements in Low-Contrast X-ray Imagery 

Martin Berger and Guido Gerig 

Swiss Federal Institute of Technology 
Communication Technology Lab, Image Science 

8092 Ziirich, Switzerland 

{berger,gerig} @vision.ee.ethz.ch 

A b s t r a c t .  Measuring motion in medical imagery becomes more and 
more important, in particular for object tracking, image registration, 
and local displacement measurements. Such measurements are especially 
difficult in megavoltage X-ray images (portal images), which are used 
to control the position of patients in high precision radiotherapy. Low 
contrast, blur, and noise render accurate measurements difficult. 
In this work we review the framework of a generic matching algorithm 
only based on the image signal and not on binary image features. Thus, 
the often unreliable step of feature extraction in such imagery is cir- 
cumvented. Another major advantage is the possibility of self-diagnosis, 
which is used for restricting the transformation in motion measurements 
if the image quality is not sufficient. 
The method of digitally reconstructed radiographs (DRR) allow for the 
computation of error free reference images, avoiding the additional step 
of therapy simulation. The multi-modal match between such DRRs and 
portal images lead to an estimate of the patient position during radio- 
therapy treatment. Results of generated data with known ground truth 
as well as results of a multi-modal match are presented. 

1 Introduction 

Accurate motion measurements  in images are essential to solve numerous prob- 
lems in computer vision. For medical imagery in particular,  precise position mea- 
surements and registration of image series represent two important  applications. 
Wherever  feature extraction is difficult or high precision is required, the least 
squares template  matching algorithm (LSM) reviewed in this paper  has many  
advantages over other methods.  LSM is a generic matching algorithm suitable 
for many applications including motion estimation in low-contrast megavoltage 
X-ray images, also called portal images. 

The specific goal in this work is the exact positioning of patients during 
radiotherapy, which is essential for high precision t reatment .  This involves auto- 
matically measuring patient setup deviation between or even during t rea tment  
sessions. One possible sensor is an electronic portal  imaging device (EPID),  
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which delivers images of the exit dose distribution during treatment. Unfortu- 
nately, the contrast of these megavoltage X-ray images is very low due to the 
high energy beam, and, since we are dealing with projected images, parts of a 
rigid 3D motion must be estimated by evaluating projected 2D images. 

Because portal images are inherently noisy and low in contrast, it is difficult 
to robustly extract features like edges, ridges or cores. This is the weakness of 
feature-based methods applied to portal images like chamfer matching [Gilhuijs 
and van Herk 1993] and core-based image registration [Fritsch et al. 1995]. Pre- 
vious area-based methods include the greyvalue correlation techniques described 
in [Dong and Boyer 1996, Moseley and Munro 1994]. Their limitations lie in the 
restriction to a translation or in a coarse search grid for computational reasons. 

In [Berger and Danuser 1997] we proposed the area-based LSM algorithm 
to find displacements between two portal images. The method of LSM with 
deformable templates meets the requirements of being an area-based approach 
with the possibility of self-diagnosis. Early work in this field was presented by 
[Lucas and Kanade 1981], who published an iterative image registration scheme 
base on LSM. Among the first papers that discussed the concept of exploiting the 
full information of the statistical models for robust template matching are [Gr/in 
1985] and [FSrstner 1987]. Following and extending the work of Griin, [Danuser 
and Mazza 1996] achieved highly accurate results at the resolution limit of a 
light microscope. Compared to these previous applications of LSM, additional 
problems arise in portal images from the higher complexity of the image scene 
and the out-of-plane rotations. 

A similar technique for the registration of medical image series is reported 
by [Unser et al. 1995], where each image is matched to the reference image 
based on a global greyvalue difference measure. In contrast to their work, our 
framework does not rely on one global template, but on several small templates 
each containing a significant image structure. Thus, the inclusion of distinct 
but insignificant image features which vary between the data of one sequence is 
avoided and the impact of global greyvalue errors such as intensity inhomogeneity 
is reduced. 

Extending the approach in [Berger and Danuser 1997], we further exploit 
the self-diagnosis capabilities. The variation of image quality of portal images 
inhibits the estimation of a 2D affine transformation for all cases. An adaptive 
scheme based on self-diagnostic measures allows for an automatic reduction of 
the parameter set where the full parameter set is not determinable. Further- 
more we include the multi-modal matching of portal images against digitally 
reconstructed radiographs (DRR) computed from the CT volume data. 

2 L e a s t  s q u a r e s  t e m p l a t e  m a t c h i n g  

LSM is an area-based matching algorithm, thus does not depend on the extrac- 
tion of binary image features. This is a very important advantage in low-contrast 
and blurred imagery, where feature extraction is mostly unreliable. Furthermore, 
unlike in most correlation methods, the optimum transformation is not searched 
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on a discrete grid, but  approached using an optimization scheme. Assuming that  
a fair initial guess can be supplied, this is not only faster but also more accurate. 

The following sections give a short review over the LSM framework. Further 
information can be found in [Berger 1998, Berger and Danuser 1997]. 

2.1 U n c o n s t r a i n e d  L S M  

The LSM includes two observations, the template image f[.] and the search 
image 9[.], called patch. The geometric relation between the original template 
and the matched area is defined by an arbitrary transformation. Depending on 
the type of the chosen transformation, this allows for displacement, rotation 
and/or  deformation of the template. 

In addition to the geometric transformation, the observations must be ad- 
justed radiometrically. The simultaneous estimation of both types of transfor- 
mations would lead to an overdetermined system, since it is not possible to 
distinguish them locally. In order to overcome this problem, the parameters of 
the radiometric transformation are estimated based on a global measure within 
the template region apart from the actual least squares optimization. The re- 
sulting radiometrically adjusted patch ~[.] is then used for the next optimization 
step. We use a linear transformation which can be written as ~[u] = ~ +/~ g[u], 
where u stands for the discrete image coordinates. 

The general geometric transformation is denoted by x = r (~, u),  transform- 
ing the image coordinates u using the parameter  vector ~. Applying the least 
squares framework, this leads to the observation equation 

f[u] + e[u] = .0(x) �9 (1) 

Equation (1) represents a relation between each greyvalue within the tem- 
plate and its corresponding image intensity in the search image)  Interpolating 
the greyvalues for a given ~ we substitute .0~[u] := ~(r  u)).  Based on a coor- 
dinate list u[k], equation (1) is reordered into a vector notation 

f + e = ~ ,  (2) 

building a series of n equations, where n is the number of pixels included in 
the template and k = 1 . . .  n. Together with the least squares objective function 
eTpe, with P as optional weight matrix, this defines an unconstrained nonlinear 
least squares (NLS) problem. This nonlinear problem is iteratively solved using 
a Newton-Raphson scheme. A new estimate ~ = ~o+A~ is computed linearizing 
the observation equations (1) around the current estimate ~~ 

I + e = ~~ + A .  A~ .  (3) 

Matrix A is the n • r 3acobian matrix V~ ~0(x ~ with respect to the parameter 
vector ~ and r denotes the number of parameters. The linear problem (3) is 

1 Notice that square brackets denote functions defined on a discrete grid. The functions 
g(.) and ~0(.) simply represent the continuous versions of g[.] and ~[.], respectively. 
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solved analytically setting the first derivative of the least squares goal function 
e T p e  to zero, which yields the normal equation system 

A T p A  �9 ~l~ = - - A T p  (~~ - f )  . (4) 

This linear equation system is then solved using Cholesky decomposition. After 
each iteration step, matrix A must be recomputed using the updated set of 
parameters ~t+l = ~t + z ~ .  When the parameter change z ~  falls below a 
specified numerical resolution the iteration process is stopped. 

2.2 Error propagation and parameter de te rminab i l i t y  

Parameter estimation in linear least squares problems are extensively discussed 
in standard literature on parameter estimation theory, for instance in [Koch 
1988]. The iterative solution of equation (1) is an unbiased estimate for the 
unknowns with a stochastic variance expressed by the diagonal elements of the 
covariance matrix E ~  = 5o �9 Q~. The value a0 denotes the a posteriori noise 
estimate and Qtg = ( A T p A )  -1 is the cofactor matrix. 

The determinability of a parameter i is tested using its relative contribution 
5i to the trace of the cofactor matrix Q~ 

5i = [tr[Q~] - tr[Q~][ ~ j  qi "2 - (5) tr[Qeg] qii E j  qjj2 ' 

where Q~t is the cofactor matrix with parameter i excluded and qij denote 
the elements of the full cofactor matrix Q~t- The efficient implementation on 
the right hand side is achieved employing the Kalman-Bucy filter technique (cf. 
[Koch 1988]), computing the partial cofactor matrix Q~ directly from Q~. 

If a contribution 5i of the parameter i is high, this parameter strongly cor- 
relates to one or more parameters. One should either exclude parameter i or 
combine it with the correlating parameters by applying parameter constraints 
as described in section 2.5. 

2.3 Mul t i  template extension 

Using multiples template instead of one large template allows significant and 
stable regions to be selected without including regions unsuitable for matching. 
There are several ways to extend the standard LSM to multiple templates. For 
all of them, the equation (1) has to be adapted to include multiple templates 
and their corresponding patches. 

The most straightforward extension is to keep one single transformation for 
all patches with the same parameter set shown in equation (7), leading to 

f l u  K ] + e[u K] ---- (6) 

where 9[.]--o~g+~Kg[.] and x K =  r (~, u K).  Formally, this procedure is similar to 
defining one large template with several scattered regions of interest. However, 
since the radiometric parameters c~ K and/~K may vary between the templates, 
it is possible to compensate for global greyvalue differences like bias fields. 
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2.4 Afl lne  t r a n s f o r m a t i o n  as geometr ic  transformat ion  

So far no assumptions have been made on the dimensionality of the problem 
and on what type of transformation is used. In the following, the case of a two 
dimensional affine transformation is presented. The corresponding parameter  
vector consists of six variables ~ = It1, t2, rnl, s l ,  s2, m2] T and the coordinate 
transformation is written as 

= [tl]+[mlt2 s2 m2Sl] o X (7) 

The derivative Vr ~(x) is then calculated explicitly using the chain rule. In vector 
notation, this leads to the n • 6 Jacobian matrix A (cf. equation (3)), each line 
Ak representing the derivatives at xk = r  u[k]). 

2.5 Employ ing  constraints  

The least squares formalism allows one to introduce additional constraints in a 
simple and intuitive way. In addition to the observation equations, zero observa- 
tions are included in the framework using large weights in the weight matrix P .  
In this section, we will apply this technique to LSM. As an examples serves the 
reduction of an affine to a similarity transformation. Instead of reparametrization 
we still employ equation (7) as transformation equation and add the following 
constraints to the parameter  vector ~: 

ml  - m2 + e m =  0 Am = [0 ,0 ,1 ,0 ,0 , -1 ]  
81 -~- 82 -+-e s =O As = [0 ,0 ,0 ,1 ,1 ,  0] . 

Analogous to the observation equations (1), the constraints are linearized around 
the current estimates m 0 and s ~ Thus, the matrix A is augmented by the 
constraint vectors Am and As. 

Employing constraints instead of reparametrization is easier to implement 
and more versatile. On the one hand, constraints can easily be changed during 
the iteration, quickly switching from a similarity to an affine transformation. On 
the other hand, only a few types of constraints can actually be expressed by 
reparametrization, which makes constraints more flexible to use. 

3 C o n t r o l l i n g  p a t i e n t  p o s i t i o n  i n  r a d i o t h e r a p y  

The steps before high precision conformal therapy include the acquisition of a 
CT, then a 3D planning of beam directions, field shape and dose distribution and 
finally the positioning of the patient using a simulator with the same geometry 
as the linear accelerator (figure 1). During radiotherapy treatment,  either portal 
films or electronic portal  images are acquired for quality control. 

The portal images in this work were acquired at the University Hospital 
of Ziirich using a Varian accelerator and their electronic portal imaging device 
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Fig. 1. Overview of the different steps of radiotherapy treatment. 

(EPID). This device delivers a distortion free image with a resolution of 256 • 256 
pixel on an area of 32•  2 [van Herk and Meertens 1988]. 

The diagnostic X-ray images from the simulator are often used as a reference 
image for measuring the patient motion in subsequent portal images. Besides the 
fact that  simulator images are not suitable for automated area-based matching 
due to their different greyvalue characteristics, they also represent an additional 
source of error with respect to the original planning data. Hence, one goal of this 
project is to eliminate the need for simulator X-ray images for motion measure- 
ments by direct comparison with a megavoltage DRR (figure la).  

DRRs are computed simulating the therapy setup by a ray-tracing based 
algorithm, also correcting for the different absorption coefficients at different 
beam energies. Thus, a DRR representing the correct patient position serves 
as reference image. Subsequent portal  images are compared to this reference 
image and the estimate of a 2D affine transformation leads to a correction of the 
patient position. However, in order to compute DRRs with sufficient quality, the 
CT slice thickness should be no larger than 5 mm. 

3.1 Selecting suitable templates 

In the particular problem of portal images, two displacements must be computed. 
Since the EPID is in general not in a fixed position, a common coordinate system 
must be established using the edges of the radiation field. These edges are very 
distinct features and pose no problems to the matching algorithm. We refer to 
[Berger and Danuser 1997] for a more detailed description of the fieldedge match. 

In the following, we will concentrate on the anatomy match. The selection of 
the template regions follows the previous work. Due to artifacts and the presence 
of distinct but unstable features (for instance originating from air in the rectum), 
a fully automated template selection is beyond the possibilities of computer 
vision. Thus, the physician has to position predefined standard templates onto 
the significant structures in the reference image (figure 2). 
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Fig. 2. Image (a) depicts a portal image with a common unstable features that origi- 
nates from air in the rectum (dark blur in the center of the image). A typical template 
selection for a AP pelvis field is shown in (b). 

3.2 Self-diagnosis within LSM 

The statistics behind the self-diagnosis outlined in section 2.2 is only valid in 
the adjusted state. Therefore, this measure can not be applied directly to the 
initial system. However, an upper bound for the determinability is computed 
matching the templates onto themselves. Based on this upper bound, a coarse 
result is computed using a restricted parameter  set which still approximates the 
final parameter  set sufficiently, usually a congruent transformation. 

At this first estimate, the full affine parameter  set is tested for determinabil- 
ity. If none of the parameters show large contributions 5~, the optimization is 
continued with the full parameter set. A general flowchart is depicted in figure 3. 

Fig. 3. Flowchart of the diagnostic measures. 

The cross-correlation between the template f[.] and the patch ~[.]--which 
is interpolated from the search image using the final parameter  set ~--should 
be very close to 1.0. For multiple templates, the correlation value is computed 
for each template. Since a low correlation value indicates a mismatch for this 
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Fig. 4. Example DRR images from the in-plane (b) and out-of-plane (c) test series 
computed from CT volume. 

region, excluding such a template and reoptimizing the geometric transformation 
usually results in a bet ter  parameter  set. 

4 R e s u l t s  

The high precision capabilities of LSM are extensively shown in [Berger and 
Danuser 1997, Danuser and Mazza 1996]. In the following sections, the emphasis 
is on the estimation of the in-plane part  of the 3D patient motion based on the 
evaluation of projected 2D images. We first apply the algorithm to generated 
datasets to test the potential  of LSM. In the last section, we present results of 
the multi-modal match. 

In all examples, an affine transformation was used for matching and the initial 
position was set to the fieldedge position. The typical run time including Gauss 
filtering of the search image, matching the fieldedge and matching the anatomy 
templates is about 4 seconds on a Sun Ultra 1 (167 Mhz UltraSPARC CPU). 

4.1 In-plane trans lat ion and rotat ions  

The following test series consisted of 35 simulated portal images with a maximum 
patient displacement of 20 mm in x and y direction and a maximum rotation of 
10 ~ (figure 4b). The standard deviations of the translation measurements were 
0.25 pixel (0.23 mm) in x direction and 0.37 pixel (0.33 mm) in y direction. These 
systematic errors are caused by the unknown y position in the CT coordinate 
system of the template features. Within the rotation measurement, these sys- 
tematic error do not occur and the standard deviations are below 0.01 ~ 

4.2 Including out -of -p lane  rotat ion 

In order to test under more realistic conditions, a test series of 200 images with 
small out-of-plane rotations is generated (figure 4c). The LSM still found the 
corresponding regions with a correlation well above 0.9. The systematic errors 
already encountered in the example above, which are an inherent problem of 
using projected images, were of course higher in this example. But the total point 
errors of 1.24mm for 2 ~ rotation and 3mm for 5 ~ still are promising results. 
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4.3 M u l t i - m o d a l  match with portal i m a g e s  

Figure 5a shows a DRR and the chosen templates including four validation 
lines, which are not used for matching. The DRR was computed from a CT 
volume with a voxel size of 2 • 2 • 3 m m  3. The corresponding portal  image series 
contained 22 images, two of which are depicted in 5b and c. The results were 
visually validated and all but  one were accepted to be correct, which indicates 
a success rate of well over 90 %. 

Fig. 5. Multi-modal match between a DRR image computed from CT data (a) and a 
portal image series (b,c). The match is based on an affine transformation model. White 
polygons outline the template regions and patches respectively, black lines represent 
validation lines which are not used for matching. 

5 C o n c l u s i o n  a n d  O u t l o o k  

The LSM method with deformable templates  is a versatile matching algorithm. 
Since it is an area-based method,  the often unreliable step of feature extraction is 
circumvented. Especially in low-contrast imagery like megavoltage X-ray images 
(portal  images), this is an impor tant  feature. 

In earlier work, LSM has been successfully applied to matching megavoltage 
X-ray images of the same modality. The results presented in this paper  show 
the suitability for a mult i-modal  match  between digitally reconstructed radio- 
graphs as reference images and the portal  images acquired during radiotherapy. 
The area-based method LSM proved robustness even when matching slightly 
distorted patterns.  

In two test series with generated data,  the systematic error caused by esti- 
mat ing a 3D motion from projected 2D images is examined. Furthermore,  tests 
with a DRR matched to real portal  images show promising results which will 
be validated more thoroughly in the near future. Another goal is to combine 
multiple 2D measurements from different directions to bet ter  es t imate the 3D 
motion and to reduce the influence of the systematic error occurring in the 2D 
measurements.  
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The presented methods are a step further in the direction of automatical ly 
controlling the patient position in radiotherapy. Applied in daily hospital routine, 
this should lead to an improved quality assurance in radiotherapy. 
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