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A b s t r a c t .  This paper addresses the problem of extrapolating very few 
range data to obtain a complete surface representation of an antomical 
structure. A new method that uses statistical shape models is proposed 
and its application to modeling a few points manually digitized on the 
femoral surface is detailed, in order to improve visualization of a system 
developped by TIMC laboratory for computer assisted anterior cruciate 
ligament (ACL) reconstruction. The model is built from a population of 
11 femur specimen digitized manually. Data sets are registered together 
using an elastic registration method of Szeliski and Lavall6e based on 
octree-splines. Principal Components Analysis (PCA) is performed on 
a field of surface deformation vectors. Fitting this statistical model to a 
few points is performed by non-linear optimisation. Results are presented 
for both simulated and real data. The method is very flexible and can 
be applied to any structures for which the shape is stable. 

1 I n t r o d u c t i o n  

A system for computer  assisted anterior cruciate l igament (ACL) reconstruction 
has been developped by TIMC laboratory since 1993. Details about  the technique 
and its clinical validation can be found in [DLO+95,DLJ+95,JLD98]. 

The system uses only intra operative data  obtained with an optical localizer 
(Optotrak,  Northern Digital, Toronto), without requiring additional images such 
as x-rays, CT or MRI. The system enables the surgeon to digitize 3D points in- 
teractively, to track relative bone motion, and to locate the pose of surgical tools 
in real time. Rigid bodies made of infra-red LEDs are attached to the bones, the 
pointers, and the tools (Fig.l(a)) .  In the current version of the system, clouds 
of digitized points are approximated by spline patches. Those da ta  enable the 
surgeon to navigate in the computer  screen in real-time with any surgical tool 
equipped with an optical rigid body, and to compare the position of the tool with 
an opt imal  position of a graft defined by 2 points F and T on the femoral and 
tibial surfaces. Currently, the system enables the surgeon to minimize the ani- 
sometry  of the graft by displaying anisometry maps  [DLO+95], whilst avoiding 
impingement  between the graft and the femoral notch [JLD98]. 

Fig.2(a) shows the Graphical User Interface of the current system for Com- 
puter  Assisted ACL surgery including anisometry maps,  a 3D view with spline 



880 

Fig. 1. (a) Surface digitizing during surgery. (b) Problem: How to extrapolate a few 
data points to a complete femur? 

surfaces and a model of the graft envelope. Since only a small surface area has 
been digitized, it is very difficult to recognize the actual pose of the tibia and 
the femur only from the small surfaces patches generated by the bicubic splines. 
In order to provide the surgeon with a more complete and realistic view of the 
scene it is desirable to have a visualization of the whole femur (respectively tibia) 
as shown in Fig.2(b) (only the femur is visualized). 

As illustrated in Fig.1 (b), the problem addressed in this paper is to recover 
the complete shape of the bones from the few available data  points. The objec- 
tives of this work are quadruple: 

- Visualization of a complete anatomical model, including anatomical land- 
marks, for better orientation. 

- Post-operative referencing of clinical results in the model coordinate system 
- Shape-based interpolation in the area of digitized points 
- Extrapolation coherent with the anatomy in the areas far from the digitized 

points 

2 R e l a t e d  W o r k  

The literature of computer vision and deformable models proposes a large variety 
of methods for building a surface model from range data. Overviews can be found 
in [BV91,MT96]. However, most of methods use only local constraints such as 
smoothness or they fit global shapes such as planes, cylinders or superquadrics 
which are not apropriate for our purpose, since the resulting shapes are not 
coherent with the anatomy if only a few data  points locally distributed are 
used. It is therefore necessary to incorporate global a priori knowledge contained 
in statistical models, using Fourier representations [SkBG96], modal analysis 
performed directly [PS91] or based on features such as crest lines [STA96], or 



881 

Fig. 2. (a) GUI for computer assisted ACL reconstruction (b) GUI using a complete 
model of the femur instead of a bicubic spline in the 3D view window : the global 
orientation and anatomy of the knee can be understood. (c) 11 right femurs of specimen 
used to build the model 

Point distribution Models (PDM) proposed by Cootes and Taylor [CTCG95]. 
Our method is based on the latter approach. 

A PDM is a deformable model built from the statistical analysis of examples 
of the object being modelled. Given a collection of N 3D training shapes of an 
object, the Cartesian coordinates of M landmark points are recorded for each im- 
age. Each training example is represented by a vector m = ( z  t ,  Y , ,  z t ,  . . . ,  ggM, YM , ZM). 

1 N After aligning of the training shapes the pointwise mean shape r i ,  = ~ Y'~i=l m i  
is then calculated. Modes of variation are found using Principal Component 
Analysis (PCA) on the deviations of examples from the mean. These modes are 
represented by 3M orthonormal eigenvectors ei. A new instance of the shape is 
generated by adding linear combinations of the t most significant variation vec- 

t tors to the mean shape: m = ffa + Y-~i=l w i e i  where wi is the weighting for the 
i th variation vector. By ensuring t < 3M, only the important  deformations are 
extracted, discarding training data  noise, and thus object shape and variation 
can be captured compactly. A key requirement for building such a model is the 
collection of several sets with corresponding landmarks from training images. 
This is presented in the following section. 

3 Bui ld ing  a statistical  shape model  

Acquiring the Training Shapes: A set of 11 dry femurs of specimen (Fig.2(c)) 
was digitized manually using a 3-D optical localizer, resulting in 11 non-organized 
point sets. Ten of the femurs have been digitized with approximately 1500 points 
randomly distributed on the bone surface. The eleventh case was considered 
separately as a template and was digitized with a superior density in a larger 
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area of the femur, resulting in approximately 6000 points. To obtain one surface 
representation of this template, an algorithm proposed by Hoppe [HDDW92] was 
used to build facets from the cloud of points, and then the result was simplified 
using the decimation method proposed in [CCMS97]. The result is a triangular 
mesh TMref of approximative 1500 vertices. 

Aligning and matching the training shapes using O c t r e e  Sp l ines :  Now 
each of the 10 point sets has to be matched to the template mesh in such a 
way that  each vertex of the template mesh TM~ef is mapped to its anatomically 
corresponding point on the femur represented by the set of points. We propose 
to use a multiresolution approach proposed by Szeliski and Lavallde, based on 
octree-splines [SL96]. The method performs a least squares minimization of the 
distances between a sparse and unorganized set of points and a dense set of points 
used to build a 3D octree-spline distance map [LSB91]. In our case, the dense set 
of points is obtained by resampling each facet of the template triangular mesh 
TMref up to 10,000 points. Fig.3(a) shows the octree containing the two shapes 
to be registered after rigid registration (top) and after non rigid registration 
(bottom). 

The result of the octree-spline based registration technique is a smooth vol- 
umetric transform T that  maps every point P of the data  space to a point 
M = T(P) of the model space. Reciprocally, it is possible to inverse this transfor- 
mation. Given a point M of the template mesh, an iterative search is performed 
to find the point P = T-I(M) such that [IM-T(P)II < c. By this process, each 
point Mi of the template mesh is assigned to a data point Pi for each data  set j 
of the N data  spaces. Note that the points Pi were not in the data  sets initially, 
but they were implicitly interpolated using the octree-spline deformation. 

To avoid having the template mesh as the reference while registering the 
training shapes, all objects have to be registered to the final mean shape. This 
is done using an iterative algorithm: At first all training shapes are matched to 
the template mesh as described above. After calculating the mean shape, now 
all training shapes are matched to this current mean. This process is repeated 
until convergence occurs. The displacement vectors dmi = mi - Ih describe the 
mapping between the mean shape and each of the training objects. 

Principal Component Analysis: Hence one can apply a Principal Com- 
ponent Analysis to the data  which results in finding the eigenvectors of the 
c0variance matr ix  C = ~ ~-~N=I din. d Tm~ of dimension 3M • 3M which can be 
calculated from the displacement vectors. If N > 3M one obtains 3 M -  1 nonzero 
eigenvectors. If N < 3M it can be shown that  the eigenvectors of the covari- 
ance matr ix  can be calculated from a smaller N x N matr ix  derived from the 
same data  [CTCG95]. In this case there are only N - 1 nonzero eigenvectors. 
Because the eigenvector calculation time goes as the cube of the size of the ma- 
trix, this can give substantial time savings, as 3M may be in the range of several 
thousands, while N normally is much smaller. As C is real and symmetric effec- 
tive Jacobi transformations can be applied to obtain the eigenvectors [PFTV92]. 
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Fig.  3. (a) Hierarchical volumetric deformation of a low density training set with a 
high density template mesh, using Octree Splines. Up: after rigid alignment. Bottom: 
after elastic registration. (b) Applying 3 standard deviations of the first and second 
deformation modes on the mean shape 
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The mean surface and the t principal modes obtained by PCA constitute the 
statistically-based shape model. 

4 Fitt ing the model  

To recover the whole surface of the object from a new set made of a few sparse 
data  points it is necessary to find simultaneously the rigid transformation (rota- 
tion R, translation T)  between the data  and the model and the decomposition 
of the t preserved eigenvectors in such a way that  the distances between the data  
points and the model are minimized. The objective function to be minimized is 
defined as follows: 

D 

f - - E  min I l d i - m j I I  2 (1) 
I<j<_M 

i = 1  

t with mj  = R ( m + ~ i = l  wie i )+T,  D the number of data  points, and di the i th 
data  point. The computationally most expensive step in the registration process 
is finding the closest point in the model to each data point. The computational  
complexity evaluating f is O ( D M )  using exhaustive search. It is not interesting 
to compute a 3-D distance map here because the model is deformed at each 
iteration. Therefore k-dimensional binary trees (k-d trees, in this case k=3) are 
used to speed up the computation [FBF77]. A k-d tree can be constructed in 
O(Mlog(M)) .  Searching the closest point in the tree to the given data  points 
can then be performed in O(D log(M)). Notice that  for each function evaluation 
the k-d tree has to be reconstructed since using different weights wi for the shape 
parameters results in a different point distribution. 

The defined function f is a nonlinear function depending on 6 + t parame- 
ters. To minimize f an algorithm is used which combines a simulated annealing 
technique with the downhill simplex algorithm by Nelder and Mead [PFTV92] 
in order to find a near global minimum. This requires an initial guess for the 
rigid-body transformation, which is obtained by rigid points to surface registra- 
tion, using the Iterative Closest Point (ICP) algorithm [BM92]. To decrease the 
search space, bounds to the parameters are applied. 

5 Results  

5.1 S i m u l a t i o n  

Ten right femurs have been used to build the statistical shape model and ex- 
periments have been done with the remaining femur, on which 60 points were 
interactively selected to simulate a realistic intra-operative digitization. 

Table l(a) shows the relative importance of the modes of variation for the 
knee model. It can be seen from this table that the first four modes already 
represent more than 90% of the shape variation in the model. Mode 1, which 
accounts for almost 70% of the total variance within the model, can be seen to 
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be primarily concerned with describing global scaling. Since the iteratively com- 
puted mean shape is only an approximation, the 10th eigenvalue is not exactly 
0.0 but it is relatively low. Fig.3(b) shows the effect of applying • standard 
deviations of the first two modes of the obtained model to the mean shape. 

After rigid alignment and optimization of the fitting function, the resulting 
root mean square error (RMS) between the test data  and the registered model as 
well as the RMS between the complete test shape and the registered model are 
computed. As expected the final RMS between the test data  and the registered 
model decreases using more deformation modes (,-, 0.7ram using one mode to ,-~ 
0.4mm using 5 modes) while this is not always the case for the RMS between the 
test shape and the registered model. Similar results are obtained by permuting 
the model in the set of specimen. Fig.4(a) (top) shows the model (triangle mesh) 
a n d  the test femur after the initial rigid registration with the ICP algorithm. 
Fig.4(a) (bottom) shows the model and the reference femur after the non rigid 
registration. The black spots represent the data  points. 

Fig. 4. (a) Simulation: the model after rigid (top) and after non rigid (bottom) regis- 
tration (b) Clinical case: the model after non-rigid fitting using 6 modes in comparison 
with the sparse set of points. 

5.2 E x p e r i m e n t s  w i t h  real  i n t r a - o p e r a t i v e  d a t a  

For two clinical cases, the surgeon acquired about 100 points randomly dis- 
tributed on the femoral notch surface (not limiting the acquisition to a small 
patch and the anterior border of the notch). Results of fitting the model with 
those data  are provided in Table l(b). Fig.4(b) shows the deformed statistical 
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model that  fits the points collected during surgery. Although additional local 
deformation of the model would be necessary for perfect fitting, the result is 
satisfactory. 

~ E i g e n v a l u e  
5500.59 69.40 

880.37 11.11 
548.97 6.93 
227.88 2.87 
191.34 2.41 
155.18 1.96 
128.95 1.63 
107.22 1.35 
104.08 1.3] 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 81.91 

P e r c e n t a g e [ - " ~  
69.40 
80.50 
87.43 
90.30 
92.72 
94.67 
96.30 
97.65 
98.97 

1.03 100.00 

RMS e r r o ~  
Rigid alignment 2.23 2.82 

Model fitting with 2 modes 2.07 2.17 
Model fitting with 4 modes 1.75 1.90 
Model fitting with 6 modes 1.61 1.83 

(a) (b) 
Table 1. (a) Relative importance of the modes of variation for the model (b) Residual 
fitting errors (in mm) for two clinical cases using rigid alignment and using model 
fitting with 2, 4 or 6 modes. 

6 C o n c l u s i o n  

First experimental results show that the chosen approach may be successfully 
applied to a system for computer-assisted anterior cruciate ligament reconstruc- 
tion, Mthough it must be mentioned that  10 training shapes of which the model 
has been built are maybe not sufficient to represent the natural shape variation 
of the femur. Therefore further experiments must be done to validate the chosen 
approach, with special care for pathologicM deformations. 

The current implementation requires a few minutes for fitting the statistical 
model with 100 data  points, but optimisation of the method is possible for 
instance using gradient descent techniques. 

The proposed method is a general technique for building specific models that  
can be applied to any case where the shape is stable and for which only a partial 
area can be digitized. 

One of the key features of this approach is to use a volumetric elastic registra- 
tion method (using octree-splines) to establish point correspondences between 
training sets which differ by their density and local distribution of points. 

R e f e r e n c e s  

[BM92] P.J. Besl and N.D. McKay. A method for registration of 3-D shapes. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 14(2):239-256, 
1992. 



887 

[BV91] R.M. Bolle and B.C. Vemuri. On three-dimensional surface reconstruction 
methods. [EEE Trans PAMI, 13(1):1-13, 1991. 

[CCMS97] A. Ciampalini, P. Cignoni, C. Montani, and R. Scopigno. Multiresolution 
decimation based on global error. The Visual Computer, 13(5), 1997. 

[CTCG95] T.F. Cootes, C.J. Taylor, D.H. Cooper, and J. Graham. Active shape 
models - Their training and application. Computer Vision and Image Un- 
derstanding, 61(1):38-59, 1995. 

[DLJ+95] V. Dessenne, S. Lavallee, R. JuUiard, P. Cinqnin, and R. Orti. Computer 
assisted knee anterior cruciate ligament reconstruction : first clinical tests. 
In Conference of Computer Vision, Virtual Reality, Robotics in Medicine 
(CVRMed'95), LNCS Series 905, pages 476-480. Springer, 1995. 

[DLO+95] V. Dessenne, S. Lavallee, R. Orti, R. Julliard, S. Martelli, and P. Cinquin. 
Computer assisted knee anterior cruciate ligament reconstruction : first 
clinical tests. J. of Image Guided Surgery, 1(1):59-64, 1995. 

[FBF77] J .H .  Friedman, J.L. Bentley, and R. A. Finkel. An algorithm for finding 
best matches in logarithmic expected time. A CM Trans. Math. Software, 
3(3):209-226, Sept. 1977. 

[HDDW92] H. Hoppe, T. DeRose, T.and McDonald J. Duchamp, and Stuetzle W. 
Surface reconstruction from unorganized points. In Catmull E. E., editor, 
Computer Graphics (SIGGRAPH '92 Proceedings), pages 71-78, July 1992. 

[JLD98] R. Julliard, S. Lavallee, and V. Dessenne. Computer Assisted Anterior 
Cruciate Ligament Reconstruction. Clinical Orthopaedics and Related Re- 
search, I998. 

[LSB91] S. Lavallee, R. Szeliski, and L. Brunie. Matching 3-D smooth surfaces 
with their 2-D projections using 3-D distance maps. In SPIE Vol. 1570 
Geometric Methods in Computer Vision, pages 322-336, San Diego, CA, 
July 1991. 

[MT96] T. McInerney and D. Terzopoulos. Deformable models in medical image 
analysis: a survey. Medical Image Analysis, 1(2):91-108, 1996. 

[PFTV92] W.H.  Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numer- 
ical Recipes in C : The Art of Scientific Computing. Cambridge University 
Press, Cambridge, England, second edition, 1992. 

[PSgl] A. Pentland and S. Sclaroff. Closed-Form Solutions for Physically Based 
Shape Modeling and Recognition. IEEE Transactions on Pattern Analysis 
and Machine Intelligence, 13(7):715-729, July 1991. 

[SkBG96] R. Szekely, A. kelemen, C. Brechbuler, and G. Gerig. Segmentation of 2D 
and 3D objects from MRI volume data using constrained elastic deforma- 
tions of flexible Fourier surface models. Medical Image Analysis, 1(1):19-34, 
1996. 
R. Szeliski and S. Lavallee. Matching 3-D anatomical surfaces with non- 
rigid deformations using octree-splines. Int. J. of Computer Vision (IJCV), 
(18)(2):171-186, 1996. 
G. Subsol, J.P. Thirion, and N. Ayache. Application of an automatically 
built 3D morphometric brain atlas: study of cerebral ventricle shape. In 
K.H. Hohne and R. Kikinis, editors, Visualization in Biomedical Computing 
(VBC'96) Proc. LNCS 1131, pages 373-382, Berlin, 1996. Springer-Verlag. 

[SL96] 

[STA96] 

0 Authors wish to thank Dr R~mi Julliard for his active collaboration to this project 
and the Anatomy Department of Grenoble University (Pr. JP Chirossel) for provid- 
ing the specimen of femurs. 


