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Abst rac t .  The registration of multimodal medical images is an impor- 
tant tool in surgical applications, since different scan modalities highlight 
complementary anatomical structures. We present a method of comput- 
ing the best rigid registration of pairs of medical images of the same 
patient. The method uses prior information on the expected joint in- 
tensity distribution of the images when correctly aligned, given a pr i -  
ori  registered training images. We discuss two methods of modeling the 
joint intensity distribution of the training data, mixture of Gaussians 
and Parzen windowing. The fitted Gaussians roughly correspond to var- 
ious anatomical structures apparent in the images and provide a coarse 
anatomical segmentation of a registered image pair. Given a novel set 
of unregistered images, the algorithm computes the best registration by 
maximizing the log likelihood of the two images, given the transformation 
and the prior joint intensity model. Results aligning SPGR and dual-echo 
MR scans demonstrate that this algorithm is a fast registration method 
with a large region of convergence and sub-voxel registration accuracy. 

1 I n t r o d u c t i o n  

Medical scans such as Magnetic Resonance (MR) and computed tomography 
(CT) are currently common diagnostic tools in surgical applications. The inten- 
sity value at a given voxel of a medical scan is primarily a function of the tissue 
properties at the corresponding point in space. Typically, various anatomical 
structures appear more clearly in different types of internal scans. Soft tissue, 
for example, is imaged well in MR scans, while bone is more easily discernible 
in CT scans. Blood vessels are often highlighted better in an MR angiogram 
than in a standard MR scan. Figure 1 shows three different acquisitions of MR 
scans. Notice that some anatomical structures appear with more contrast in one 
image than in the others. Anatomical structures in these various modalities can 
be segmented and displayed separately. However, it is most convenient for the 
surgeon to have information about all the structures fused into one coherent 
dataset. To perform the multi-modality fusion, the different volumetric images 
are automatically registered to a single coordinate frame. 
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Fig. 1. SPGR, Proton Density, and T2 Weighted Magnetic Resonance images of a 
brain. Notice that some anatomical structures appear with more contrast in one image 
than the others. 

1.1 A l i g n m e n t  o f  F e a t u r e s  o r  F iduc i a l s  

One method of aligning two medical images is to extract  features from the im- 
ages, then compute the best alignment of the features [7]. This approach depends 
greatly on the ability to automatically and accurately extract  reliable image fea- 
tures. In general, methods of feature extraction such as intensity thresholding 
or edge detection do not work well on medical scans, due to non linear intensity 
biases and highly textured structures. Without the ability to accurately localize 
corresponding features in the images, alignment in this manner is difficult. 

A second registration method uses fiducial markers attached to a patient 
throughout the various acquisitions. If the markers can easily be located in the 
images, the volumes can be registered by computing the best alignment of the 
corresponding fiducials [8, 12]. The main drawback of this method is that  the 
markers must remain attached to the patient throughout all image acquisitions. 

1.2 M a x i m i z a t i o n  o f  M u t u a l  I n f o r m a t i o n  

Maximization of mutual information is a general approach applicable to a wide 
range of multi-modality registration applications [1, 2, 6, 11]. One of the strengths 
of using mutual information (and perhaps in some special cases, one of the 
weaknesses) is that  MI does not use any prior information about the relationship 
between joint intensity distributions. 

Given two random variables X and Y, mutual information is defined as [1]: 

M I ( X ,  Y)  = H(X)  + H(Y)  - H(X,  Y) (1) 

The first two terms on the right are the entropies of the two random variables, 
and encourage transformations that  project X into complex parts of Y. The 
third term, the (negative) joint entropy of X and Y, takes on large values if 
X and Y are functionally related, and encourages transformations where X 
explains Y well. Mutual information does not use an a priori model of the 
relationships between the intensities of the different images. Our method not 
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Fig. 2. Flowchart of the a priori training and the online registration. 

only expects the relationship between the intensity values of registered images 
to be maximal  in mutual  information, but also to be similar to tha t  of the 
pre-registered training da ta  of the same modalities. The prior joint intensity 
model provides the registration algorithm with additional guidance which results 
in convergence on the correct alignment more quickly, more reliably and from 
further initial start ing points. 

1.3 I n c o r p o r a t i n g  a P r i o r  M o d e l  

The framework for our registration process is illustrated in Figure 2. The method 
requires a pair of registered training images of the same modalities as those we 
wish to register in order to build the joint intensity model. To align a novel pair 
of images, we compute the likelihood of the two images given a certain pose 
based on our model by sampling the intensities at corresponding points. We 
improve the current hypothesized pose by ascending the log likelihood function. 

2 Learning the Joint Intensity Model 

We consider two models of joint intensity: mixture of Gaussians and Parzen Win- 
dow Density. In both  methods, we seek to estimate the probabil i ty of observing 
a given intensity pair at the corresponding point in the two images. 

2.1 M i x t u r e  of  G a u s s i a n s  M o d e l  

Given a pair of registered images from two different medical image acquisitions, 
we can assume that  each voxel with coordinate x = Ix1, x2, x3] T in one image, 
I1, corresponds to the same position in the pat ient 's  ana tomy as the voxel with 
coordinate x in the other image, /2 .  Further, consider that  the anatomical  struc- 
ture Sk at some position in the patient  will appear  with some intensity value il 
in the first image and i2 in the second image with joint probabil i ty P ( i l ,  i2 I Sk).  
We also define P(Sk )  = vk to be the prior probabili ty that  a random point in 
the medical scan corresponds to structure Sk. 
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Fig. 3. LEFT: Joint intensity histogram of the registered MR PD/T2 training images 
used to fit a mixture of Gaussians. RIGHT: Rough segmentation of a registered image 
pair. Each voxel is classified based on which Gaussian it most likely belongs to, based 
on the mixture of Gaussian model. 

By making the assumption that voxels are independent samples from this 
distribution (and ignoring relative positions of voxels), we have 

P(11, h )  ~--- n P(I1  (Z),/2(X)) (2) 
xGI 

= H h(x) I (3) 
xGI k 

We model the joint intensity of a particular internal structure Sk to be a two 
dimensional (dependent) Gaussian with mean #k and full covariance matrix ~k. 
Letting i be intensity pair [il, i2] T, 

( 1 --�89 P(i[Sk) = 27rl~k1�89 (4) 

This model of the intensities corresponds to a mixture of Gaussians distribution, 
where each 2D Gaussian Gk corresponds to the joint intensity distribution of an 
internal anatomical structure Sk. Thus, the probability of a certain intensity pair 
(independent of the anatomical structure) given the model, M is 

P(ilM)= Z { ~rk le_�89 ~ (5) 
k \2~[Zkl~ ] '  

To learn the joint intensity distribution under this model, we estimate the pa- 
rameters 7~k, #k, and ~k using the Expectation-Maximization (EM) method [3]. 

The mixture of Gaussians model was chosen to represent the joint intensity 
distribution because we are imaging a volume with various anatomical structures 
that  respond with different ranges of intensity values in the two acquisitions. We 
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Fig. 4. Two views of the joint intensity distribution function computed using Parzen 
estimation with a Gaussian windowing function. 

assume that  those ranges of responses are approximately Gaussian in nature. 
Therefore, one might expect that  each Gaussian in the mixture may correspond 
roughly to one type of anatomical structure. In other words, the model produces 
an approximate segmentation of the structures in the images. Figure 3b shows 
the segmentation of a registered pair of MR images using the Gaussian mixture 
model prior. Gerig, et al. [5] used similar methods of statistical classification to 
produce accurate unsupervised segmentation of 3D dual-echo MR data. 

Segmentation of medical images based solely on intensity classification (with- 
out using position or shape information) is, in general, very difficult. Often differ- 
ent tissue types may produce a similar or overlapping range of intensity responses 
in a given medical scan, making classification by intensity alone quite challeng- 
ing. MR images include nonlinear gain artifacts due to inhomogeneities in the 
receiver or transmit coils [4]. Furthermore, the signal can also be degraded by 
motion artifacts from movement of the patient during the scan. 

The segmentation produced by this method shown in Figure 3b suffers from 
the difficulties described above. For example white matter  and gray matter  have 
overlapping ranges of intensities in both image acquisitions. Furthermore, note 
that  the distinction between gray and white matter  on the right hand side is not 
segmented clearly. This is most likely due to the bias field present in the image. 

Despite these difficulties, the segmentation does a reasonable job of picking 
out the major structures, although it is inaccurate at region boundaries. There- 
fore, we do not intend to use this method alone to compute an accurate segmen- 
tation of the underlying structures. Instead, we could use the mixture model in 
combination with a more sophisticated algorithm to solve for segmentation, or 
for registration purposes, as described in section 3. 

2.2 Parzen W i n d o w  Densi ty  Est imat ion 

The prior joint intensity distribution can also be modeled using Parzen window 
density estimation. A mixture of Gaussians model follows from the idea that  the 
different classes should roughly correspond to different anatomical structures 
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Fig. 5. Starting position, a middle position, and the final alignment computed by the 
registration gradient ascent algorithm. Each image shows the SPGR and PD overlayed 
in block format in the three orthogonal slices. The images in the upper right depict the 
histogram of the intensity pairs at that alignment. When the images are aligned, the 
histogram should resemble the distribution in Figure 4. 

and thus provides an approximate segmentation into tissue classes. However, 
the EM algorithm for estimating the parameters of a mixture of Gaussians is 
sensitive to the initialization of the parameters and in some cases can result in 
an inaccurate prior model of the joint intensities. 

We therefore also consider modeling the joint intensity distribution based 
on the Parzen window density estimation using Gaussians as the windowing 
function. In practice, this model defined by directly sampling the training data  
provides a better  explanation of the intensity relationship than the Gaussian 
mixtures that  require the estimation of various parameters. 

Consider our registered training image pair (I1,/2). We estimate the joint 
intensity distribution of an intensity pair i = [il, i2] T given the prior model, M: 

1 ( 1  __2_~(i__~t)T(i__~t)) (6) P(i]M) = -~ ~ 27ra-----ffe 
ttE(Ii,I2) 

where the #'s are N samples of corresponding intensity pairs from the training 
images. Figure 4 illustrates this estimated joint intensity distribution. 

3 Maximum Likelihood Registration 

Given a novel pair of unregistered images of the same modalities as our training 
images, we assume that  when registered, the joint intensity distribution of the 
novel images should be similar to that  of the training data. When mis-registered, 
one structure in the first image will overlap a different structure in the second 
image, and the joint intensity distribution will most likely look quite different 
from the learned model. Given a hypothesis of registration transformation, T, 
and the Gaussian mixture model, M, we can compute the likelihood of the two 
images using Equation 2: 

P(I1,12 I T, M) = I I  P(I1 (x), 12 (T(x)) [ T, M). (7) X 
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Fig. 6. Samples from the negative log likelihood function over various angles and x- 
shifts. Note that over this range, the function is very smooth and has one distinct 
minimum, which in this case occurs 0.86 mm away from the correct alignment. 

We register the images by maximizing the log likelihood of the images, given the 
t ransformation and the model, and define the maximum likelihood transforma- 
tion, TML, as follows: 

TML = argmax ~ log(P(I1 (x), Is(T(x)) IT, M)) (8) 
T 

X 

The likelihood te rm in this equation can be substi tuted with either Equation 5 or 
6, depending on which joint intensity model is chosen. For the results presented 
here, the Parzen model is used, as it bet ter  explains the intensity relationship 
between the two modalities. However, the mixture of Gaussians model encodes 
coarse tissue type classes and thus provides a framework for later incorporating 
into the registration process prior knowledge of the relative positions and shapes 
of the various internal structures. 

To find the maximum likelihood transformation,  TML, we use Powell maxi- 
mization [9] to ascend the log likelihood function defined in Equation 8, finding 
the best rigid transformation.  In both  the mixture of Gaussian and Parzen win- 
dow models of the distribution, the log likelihood objective function is quite 
smooth. Figure 6 illustrates samples from the negated objective function for 
various rotat ion angles (along one dimension) and x position shifts of the trans- 
formation. Over this sampled range of •  degrees and :E20 mm, the function 
is always concave and has one minimum which occurs within a millimeter of 
the correct transformation.  Computing the registration by maximizing the like- 
lihood of the image pair given the t ransformation and the model seems to be an 
efficient, accurate method of registration. 
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PD T2 Registration SPGR / PD Registration 
# Error # Error # Error # Error] # Error # Error # Error 
10 0.79 19 1.42 28 1.26 1 4.87" i 10 1.47 19 2.57 28 1.54 
11 0.73 20 0.75 29 0.76 !2 2.69 11 3.17 !20 2.67 29 2.15 
12 0.68 21 0.69 30 2.24 3 0.16 12 1.32 21 2.77 30 1.50 
13 1.52 22 1.33 31 0.90 14 0.78 13 1.18 22 3.47 31 1.43 
14 0.63 23 0.66 32 0.78 5 1.69 14 1.59 23 3.87 32 1.83 
15 0.80 24 1.01 33 1.28 '6 5.59* 15 1.25 24 6.03* 33 1.64 
16 0.89 25 1.07 34 0.74 7 3.02"1 16 1.26 2519.72* 34[ 3.18 
17 0.82 26 0.70 35 1.08 ~8 1.36 17 1.19 26 2.03 35 2.01 
18 1.36 27 0.81 36 0.89 9 0.73 18 1.85 27 5.03* 36 2.46 

T a b l e  1. The results of registering 36 test images. The registration error (in mm) was 
computed by taking the average error of the eight vertices of the imaging volume. 
*The patient moved between scans and thus the ground t ruth  is wrong. By inspection, 
our alignment looks bet ter  aligned than the "ground-truth" registration. 

4 Results  of Registration 

T h e  t r a in ing  and  r eg i s t r a t i on  a lgor i thms  descr ibed  above  were t e s ted  using M R  
d a t a s e t s  from 37 pa t i en t s  1. Each  pa t i en t  was scanned  using two protocols ,  a 
coronal  S P G R  scan of  256 x 256 x 124 voxels wi th  a voxel  size of  0.9375 x 
0.9375 x 1.5 m m  and  a dua l  echo (p ro ton  dens i ty  and  T2-weigh ted)  axia l  scan 
of  256 x 256 x 52 voxels wi th  a voxel  size of  0.9753 x 0.9375 x 3.0 ram. One of 
the  pa t i en t s '  d a t a s e t s  was used for t r a in ing  pu rposes  and  the  r ema in ing  36 were 
used for tes t ing.  T h e  two types  of r eg i s t r a t ion  pe r fo rmed  in these  expe r imen t s  
were P D  wi th  T2 and  S P G R  wi th  PD.  T h e  jo in t  i n t ens i ty  d i s t r i bu t i on  for each 
m o d a l i t y  pa i r  was mode led  using a Pa rzen  es t ima t ion .  The  in i t ia l  pose  in all 
cases was a b o u t  90 ~ and  a few cen t imete rs  away. Each  r e g i s t r a t i on  converged in 
1 - 2  minu tes  on a P e n t i u m  P r o  200. Table  1 shows the  resul ts  of  the  reg is t ra t ions .  

4 .1  P r o t o n  D e n s i t y  a n d  T 2 - W e i g h t e d  V o l u m e  R e g i s t r a t i o n  

We first consider  the  p rob l em of  regis te r ing  P D  images  to t r a n s f o r m e d  T2 as a 
means  of t es t ing  the  r eg i s t r a t ion  a lgor i thm.  Each  T2-we igh ted  scan was r o t a t e d  
by  90 ~ and  t r a n s l a t e d  5 cm and then  reg is te red  wi th  the  co r r e spond ing  P D  scan. 
Since these  T2 and  P D  images  were acqui red  at  the  same t ime  and  are  or ig ina l ly  
in the  same coo rd ina t e  sys tem,  by  p e r t u r b i n g  one scan by  a known amount ,  we 
have accu ra t e  g r o u n d - t r u t h  upon  which to  va l ida te  the  r eg i s t r a t i on  process.  All  
36 tes t  cases reg i s te red  wi th  sub-voxel ,  and  in mos t  cases wi th  sub-mi l l ime te r  
accuracy.  Note  t h a t  the  m e t h o d  has a large  region of convergence  and  thus  does 
not  require  the  s t a r t i n g  pose to  be ve ry  near  the  correc t  solut ion.  

1 The MR datasets were provided by M. Shenton and others, see acknowledgments. 
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4.2 S P G R  and P r o t o n  Dens i ty  Vo lume  Regis trat ion  

A more interesting and more challenging alignment problem consists of register- 
ing each pat ient 's  coronal SPGR scan with the same pat ient ' s  PD image. This 
registration problem is more challenging given that  the two modalities were not 
acquired simultaneously and also do not contain the same region of the head: 
the P D / T 2  images are cropped at the chin (see Figure 1). 

Since each patient  had the scans performed during the same sitting in the 
scanner, the headers of the scans provide the ground-truth alignment between 
the various acquisitions, assuming the patient did not move between acquisitions. 
However, since the pat ients '  heads were not fixed in the scanner, patients could 
move between acquisitions. Despite this issue, we use the scanner poses as ground 
truth,  since in most cases it seems that  the patient did not move significantly. By 
visually inspecting the SPGR registered with the PD images using the ground 
truth, one notices a discrepancy of as much as a centimeter in six of the pat ients '  
scans (marked with an �9 in Table 1). In these cases, the error values reported 
are not valid, and our registration qualitatively appears  bet ter  aligned than  the 
"ground-truth" registration. Of the 36 cases we have used in our initial tests of 
this method, almost all of the cases automatically registered to within one voxel, 
from a start ing position of about  90 ~ and a few centimeters away. 

5 F u t u r e  W o r k  

The promising initial registration results described herein provide various direc- 
tions of future work. To date, we have tested this registration algorithm only on 
MR images, primari ly due the availability of this part icular  set of data. There 
is interest in acquiring more datasets  of different modalities, including MR An- 
giogram, CT, and P E T  to further examine this registration technique by means 
of the Retrospective Registration Evaluation Project  [12]. 

Another area of further investigation is to include additional statistical mod- 
els to the current framework. Non-linear bias fields present in the MR data  can 
cause mismatches in intensity histograms between the training and test images. 
Registration using a prior on joint intensity information can be sensitive to these 
differences. Thus, there is interest in integrating the statistical intensity correc- 
tion work of Wells, et  al. [10] into this registration technique to both provide 
a more reliable intensity correspondence between training and test data, and 
perhaps assist in the process of segmenting the anatomical  structures in the 
images. 

Additional information such as prior knowledge of the shapes or relative po- 
sitions of internal structures may help in the registration process. Such informa- 
tion certainly aids in segmentation, by offering guidelines such as what  structures 
are most likely to appear  next to other structures. Given that  segmentation and 
registration are related in that  the knowledge of one greatly assists in the com- 
putat ion of the other, this would imply that  the addition of these types of priors 
may also assist in registration. 
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