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Abst rac t .  A fully automated voxel-based algorithm for multimodal 
non-rigid image registration using a mutual information based similarity 
criterion is presented. The image deformation vector field is found by 
dividing images into overlapping neighborhood regions and translating 
these regions to locally increase the similarity criterion. The calculated 
displacement in each region is assigned to the centered pixel of each 
neighborhood region and propagated to its neighbors with a Gaussian 
window function assuring continuity and smoothness of the deformation 
field. Initial experiments on 2D test data qualitatively demonstrate the 
feasibility of this approach. 

1 I n t r o d u c t i o n  

Images from different medical imaging modalities often provide complementary 
information to the clinician, and therefore image alignment or registration has 
found several applications in diagnosis, t reatment planning, and therapy follow- 
up. Registration algorithms (see [18] [20] for an overview) can be classified as 
being either stereotactic frame based, landmark based, surface based, or voxel 
based. Voxel-based methods optimize a metric measuring the similarity of all 
geometrically corresponding voxel pairs for some feature. Until recently, research 
was mainly focused on the search for an adequate voxel-based similarity measure 
as an optimization functional. Proposals for new and bet ter  alignment measures 
culminated in the use of information-theoretic matching criterions. An example 
of this approach is the concept of mutual information, which was introduced 
independently by Collignon et al. [8] and Viola and Wells [21]. 

Traditional registration methods apply global and rigid transformations, 
which is useful in cases where rigid body assumptions are likely to hold. How- 
ever, they cannot account for non-rigid morphological variability between and 
within subjects. For applications where this variability matters,  e.g. segmen- 
tation of brain structures by matching an individual brain to a labeled brain 
template, non-rigid matching must be used. Other applications include regis- 
tration of intra-operative imaging data  with pre-operative images that  delivers 
intra-operative guidance. 

In non-rigid matching, a deformation vector is determined for each image 
voxel in such a way that ,  applying the total  deformation vector field, causes the 



1100 

similarity criterion to reach an optimal value and both images to get geomet- 
rically aligned. The vast amount of degrees of freedom introduced in non-rigid 
matching can be reduced by imposing constraints on the deformation field. 

Static constraints are imposed via landmark or control points. The defor- 
mation in a certain point is then obtained by interpolation of the known de- 
formations in the landmark points (e.g. by calculating a spline through the 
landmarks [2]). Succesful work on using mutual information as a similarity mea- 
sure and thin-plate spline algorithms as static constraints on the deformation 
field are found in [15] for intra-operative guidance, and more generally in [16]. 
However, the corresponding control points need to be found manually or semi- 
automatically, and their limited number is too restrictive. 

This problem can be alleviated by formulating registration as a dynamics 
problem, where dynamic constraints are imposed on the deformation field by 
modeling the imaged objects to be aligned as deformable solid bodies. External 
forces trying to deform objects are gradients of a similarity criterion, causing the 
similarity to increase. The deformation is constrained by internal forces gener- 
ated because of the physical properties of the object. Early work using Navier- 
Lam~ equations found in elasticity theory was reported by Bajcsy et al. [1], 
based on work by Burr [6] and Broit [3]. Plastic registration [10], has even more 
degrees of freedom than elastic registration. Very little constraints are imposed 
on the possible deformations, except that  topology must be preserved and that  
the transformation must be continuous and smooth. Plastic registration can be 
thought of as deforming a viscous fluid. The more viscous the fluid is, the more 
it will resist deformation and consequently the more smooth the transformation 
will be. Because of this kind of interpretation, plastic registration algorithms 
have also been called Fluid Transforms in the literature. Christensen [7] there- 
fore uses Navier-Stokes equations found in hydrodyamics theory to regularize the 
computed deformation field. In developing a speeded-up implementation of the 
fluid approach of [7] Bro-Nielsen [4] noticed the correspondence between these 
Tikhonov-type of regularization methods and the Gaussian scale space. Note 
that  Thirion's [19] so-called Maxwellian 'demon'-based method in [19] makes 
effectively use of this correspondence. In a practical and approximative im- 
plementation, the problem of regularization boils down to the choice between 
Gaussian smoothing of either the total calculated deformation field (i.e. elastic 
registration) or the incremental deformation field (i.e. fluid registration), since 
the Gaussian function is the Green's function of the heat or diffusion equation. 
In this case, the regularizer is the diffusion equation, that  propagates deforma- 
tions to neighboring points [12]. Hence, one can say that  the demons method is 
a trade-off between speed of calculations and accuracy of the results. 

Most of the above mentioned non-rigid matching methods use a least squared- 
error distance measure as a similarity metric (the so-called Gaussian sensor 
model). As a lot of clinical applications ask for inter-individual and multi-modal 
matching, several more effective matching criteria were proposed (e.g. correla- 
tion measures [10], or feature-based potentials [7]). Recently, mutual information 
has been used as a similarity criterion in a dynamics based method, presented by 
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Maintz et al. [17]. The main drawback of their method is the implicit assumption 
that  probabilities computed after rigid registration are good approximations of 
the same probabilities after fluid matching. 

In this paper, we propose a dynamics based registration algorithm [12] using 
mutual information, and without these limitations. It 's a variant of the uni-modal 
image registration method explored by D. Collins [10], where image transforma- 
tions are found by dividing images into regions and translating these regions to 
increase the local similarity criterium. The theoretical aspects of our algorithm 
and implementation issues are described in section 2. In section 3, some results 
on artificial and real images are presented, followed by a discussion in section 4. 

2 A l g o r i t h m  

2.1 Similarity metric 

The information-theoretic measure of mutual information [11] measures the 
amount of information one random variable contains about another random 
variable. The mutual information of two images is maximal when they are ge- 
ometrically aligned (see [9] for a rigorous discussion). The advantage of this 
criterion is its generality, since it does not assume a certain relationship between 
the grey-values in the images to be registered [14]. 

Let A and B be two images with marginal entropies H(A) and H(B), and 
joint entropy H(A, B) then the expression of mutual information can be written 
as: I(A,B) = H(A) + H(B) - H(A,B). Marginal entropies H(A) and joint 
entropy H(A, B) are defined using joint and marginal probability distributions, 
which are in turn estimated using image histograms (see [14] for definitions). 

2.2 Outline 

The goal of our method is to calculate a deformation field that  maximizes the 
mutual information functional. Calculating a displacement separately for each 
image voxel, makes the problem ill-posed. Because of the statistical nature of 
mutual information, centered neighboorhood regions are defined in each point of 
a discrete lattice {xi[i = 1, ..., N}, of the image to be registered (N is the num- 
ber of dimensions). This image is then locally transformed by translating every 
neighborhood region so that  the total mutual information increases. Therefore 
the incremental changes to the joint histogram and marginal histograms are 
computed. 

The calculated displacement in xi is then propagated to each point in the 
neighborhood region by a propagation function, which in practice can be a Gaus- 
sian kernel. This deformation propagation can be interpreted in 3 ways. The most 
direct interpretation is to consider the image as a viscous fluid and the defor- 
mation propagation as the viscosity of this fluid. Alternatively one can interpret 
the Gaussian as a low pass filter and deformation propagation as convolving the 
deformation field with this low pass filter. Finally one can interpret the Gaus- 
sian as a radial basis function and the deformation propagation as a radial basis 
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function spline expansion of the deformation field. Note that the deformation 
propagation ensures continuity and smoothness of the deformation field. 

Because the deformations of neighbouring nodes are not independent, the 
deformation in every node cannot be estimated in one pass, so this process 
is repeated iteratively. The iterative process is stopped when the incremental 
change to mutual information falls below a threshold. 

As topology must be preserved, D(xi) may not 'jump' over any of its trans- 
formed neighboring nodes: this is accomplished by appropiately rescaling the 
incremental updates of the deformation field (for a more rigorous treatment of 
topology violation, see [13]). 

2.3 I m p l e m e n t a t i o n  issues 

In order to speed up the algorithm, some approximations were made to the 
above outlined method. Sub-voxel translations were not considered in moving 
the neighborhood region, to avoid additional interpolations. Another change was 
to consider translations only in the direction of the image gradient of the floating 
image, hereby assuming that iso-intensity curves deform only in the direction of 
the normal onto these curves. Note the equivalence with the optical flow based 
demons method described in [19], and the fact that the number of evaluations 
of the criterion is hereby reduced. 

By translating the neighorhood region around each image voxel, local trans- 
formations are found, that are propagated into a continuous and smooth trans- 
formation. Because macroscopic features are generally more stable than micro- 
scopic ones (for human anatomy), it would be useful to recover first more global 
deformations and in a later stage fine and detailed deformations. This can be 
controlled in three ways: by using multi-resolution pyramids, by varying the 
neighborhood region size, and by varying the number of bins in calculating his- 
tograms. 

Using multi-resolution image pyramids, calculation proceeds from coarse to 
fine, i.e. from the images with the lowest resolution to the highest resolution. 
Because of the fact that, by filtering the image the cost function is also smoothed 
(i.e local minima are filtered away) faster convergence to a global optimal value 
will be made easier. In practice only few levels suffice. The size of the neigh- 
borhood region can also be varied on a large-to-small basis. In doing so, large 
deformations are propagated at low resolution levels, and fine and detailed defor- 
mations are recoverd at high resolution levels. As binning corresponds to a raw 
labeling of the imaged objects, the number of bins to build up the histograms can 
be chosen on a small-to-large basis. In this way, one considers large 'objects' at 
the coarsest resolution levels and small detailed 'objects' at the finest resolution 
levels. 

3 R e s u l t s  
3.1 Test on Artificial M u l t i - M o d a l  Images  

To evaluate the registration algorithm the image grid of an MR slice (size 256 x 
256 pixels) was deformed using an analytically known transformation. In order 
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to simulate multi-modality, the intensities of this deformed image were changed 
with a sine function: sin(Tr �9 intensi ty) .  In this way, the reference image was 
created artificially, depicting a similar object imaged with a different modality, 
with a non-linear and one-to-many relationship between the image intensities of 
floating and reference images. 

To be able to compare the images quantitatively, the theoretical deformation 
field was applied to the original MR slice, hereby creating a uni-modal equivalent 
to the reference image. Test setup and results are depicted in figure 1. 

3.2 Test on Real  Mult i -Modal  Images 

Tests were also carried out on real multi-modal images. Therefore a pair of 
proton-density and T2 images was used, because they are already optimally 
registered at acquisition. The T2 image was taken as floating image, while the 
proton-density image was deformed using a similar exponential deformation field 
as used for the artificial images. 

The comparison of the result with the theoretical solution was possible be- 
cause of the fact that the original PD and T2 images were aligned from the start, 
and was made in the same way as with the artificial images: the theoretical de- 
formation field was applied to the original T2 slice, hereby creating a uni-modal 
equivalent to the reference PD image. Test setup and results are depicted in 
figure 2. 

3.3 Application: Atlas-driven Segmentat ion  

One could use non-rigid registration to match images to a digital anatomical atlas 
for the segmentation of brain (sub)structures. In the ideal case, this could be 
accomplished automatically by an adequate registration algorithm, that brings 
images into correspondence within the same reference frame of the atlas. 

As a test case for our algorithm, we made a segmentation map of a set 
of T2 and proton-density images of one patient A. The image created in this 
way was considered the 'atlas'. This map was then registered non-rigidly to a 
T2 image of another patient B (together with a corresponding proton-density 
image, considered 'study' images). Evaluation of the result is then possible by 
comparing the deformed 'atlas' to the segmentation of the 'study' images of 
patient B. Qualitative results are shown in figure 3. Notice that the result could 
still improve by registering the segmentation map to both study images (this 
requires building a 3D joint histogram from the atlas and both T2 and PD 
study images). 

4 D i s c u s s i o n  a n d  C o n c l u s i o n  

In this work, a non-rigid registration algorithm using an information-theoretic 
criterion has been presented. The image transformation was found by dividing 
the image into small regions and translating these regions to increase the local 
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Fig. 1. Test setup and results for artificial images; from top left to bottom right: 
floating image, reference image, deformed floating image, difference between calculated 
deformed floating image and theoretically deformed floating image (intensities rescaled 
to [0,1]), theoretical grid deformation (subsampled detail), calculated grid deformation 
(subsampled detail) 

Fig. 2. Test setup and results for real images; from top left to bottom right: T2 
floating image, PD reference image, deformed floating image, difference image be- 
tween calculated T2 image and theoretically deformed T2 image (intensities rescaled 
to [0,1]), theoretical grid deformation field (subsampled detail), calculated grid defor- 
mation(subsampled detail) 
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Fig. 3. Preliminary result for atlas segmentation; from left to right: segmentation map 
of patient A, i.e. the 'atlas' (floating image), T2 reference image of patient B, segmen- 
tation map calculated from T2 reference image and corresponding PD image of patient 
B, deformed floating image 

similarity criterium. The floating image was considered a viscous fluid and the 
deformation propagation the viscosity of this fluid. 

Because the resulting deformation field is smooth and continuous, the algo- 
rithm cannot account for topological differences (as can be seen in the results of 
figure 3. 

One has to bear in mind that the 'physical' descriptions of elastic and fluid 
registration model the whole image grid as one physical object, and not the sepa- 
rate objects seen in the image. Modelling the different imaged objects as separate 
tissues would require an a priori segmentation, and a physically correct model 
for each of the segmented objects depending on the application (for intra- and 
inter-individual morphometric studies, e.g. based on physical growth models [5] 
or morphogenesis). It also implies the modeling and calculation of discontinuous 
and non-smooth deformation fields for applications in intra-operative guidance. 
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