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Abstract .  Over the last five years, new "voxel-based" approaches have 
allowed important progress in multimodal image registration, notably 
due to the increasing use of information-theoretic similarity measures. 
Their wide success has led to the progressive abandon of measures using 
standard image statistics (mean and variance). Until now, such measures 
have essentially been based on heuristics. In this paper, we address the 
determination of a new measure based on standard statistics from a 
theoretical point of view. We show that it naturally leads to a known 
concept of probability theory, the correlation ratio. In our derivation, 
we take as the hypothesis the functional dependence between the image 
intensities. Although such a hypothesis is not as general as possible, it 
enables us to model the image smoothness prior very easily. We also 
demonstrate results of multimodal rigid registration involving Magnetic 
Resonance (MR.), Computed Tomography (CT), and Positron Emission 
Tomography (PET) images. These results suggest that the correlation 
ratio provides a good trade-off between accuracy and robustness. 

1 I n t r o d u c t i o n  

The general principle of voxel-based registration consists of quantifying the qual- 
ity of matching with respect to a similarity measure of the images' overlapping 
voxels. As the measure is assumed to  be maximal when the images are correctly 
aligned, these approaches are often implemented using an optimization scheme, 
or simulating a dynamic process [7]. 

Many similarity measures have been proposed in the l i terature (see [3,15, 2, 6] 
for reviews). Considering the elementary problem of aligning two similar images, 
the first idea was to use a least squares criterion. Simple correlation measures 
were then proposed in order to  cope with inter-image bias. Although these sim- 
ilarity measures have been used extensively in medical imaging, they basically 
assume a linear relationship between the image intensities. Such a hypothesis is 
generally too crude in multimodal registration. 

More recently, Woods et al. [21, 20] have proposed an original criterion which 
proved itself to be efficient for matching P E T  with MR. Although the method 
needs some manual segmentation to  work, Nikou et al. [9] have defined a robust 
version of the criterion that  led to a fully automatic algorithm and extended its 
usage to several modality combinations. 
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But the currently most popular multimodal measure is probably mutual in- 
formation [18,17, 5,13, 81 since it has been used with success for a large variety 
of combinations including MR, CT, PET, and SPECT 1. Given two images X 
and Y, one can define their joint probability density function (joint pdf), P(i,j),  
by simple normalization of their 2D-histogram (other approaches are possible, 
see section 2.3). Let P~(i) and P~(j) denote the corresponding marginal proba- 
bility density functions (pdf's). Mutual information between X and Y is given 
by [1]: 

I (X ,Y)  = ~-~ P(i,j)  log2 P(i, j)  
i,j P~(i)Py(j) " 

The mutual information measure is very general because it makes no assump- 
tions regarding the nature of the relationship that exists between the image in- 
tensities (see [16] for an excellent discussion). It does not assume a linear, nor 
functional correlation but only a predictable relationship. 

However, one pitfall of mutual information is to treat intensity values in 
a purely qualitative way, without considering any notion of proximity in the 
intensity space. As one tissue is never represented by a single intensity value, 
nearby intensities convey a lot of spatial information. 

Let us illustrate this remark with a synthetic experiment (see figure 1). We 
consider two artificial images : a binary image A representing a "grey stripe" 
(40 x 30 pixels), and a gradation image B of the stripe (30 x 30 pixels) in which 
the intensity is uniform in any column but each column has a different intensity. 

Fig. 1. "Grey stripe" registration experiment. 

If we horizontally move B over A, we note that any translation corresponding 
to an integer number of pixels makes mutual information I(A, BT) maximal 
(provided that BT totally falls into A). Then, I(A, BT) reaches 1, which is its 
theoretical upper bound in this case. This is to say that mutual information does 
not explain how to align the stripes. 

Mutual information and the correlation ratio (later explained) have been 
computed for various horizontal translations of B, using bilinear interpolation 
for non-integer ones (see figure 2). Unlike mutual information, the correlation 

1 Single Photon-Emission Computed Tomography. 
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Fig. 2. "Grey stripe" registration experiment. Left, plot of mutual information I ( A, BT ) 
vs. horizontal translation. Right, the correlation ratio. By convention, the null transla- 
tion corresponds to the case where the stripes completely overlap. Notice that for any 
integer translation, I(A, BT) is maximal (for non-integer translations, smaller values 
are observed due to interpolation). 

ratio has an absolute maximum corresponding to the position where the stripes 
completely overlap. 

This example suggests that mutual information may be under-constrained 
when reasonable assumptions can be made upon the existing relationship be- 
tween the images. Practically, one often observes its tendency to handle many 
local maxima. In this paper, we address the case where a functional correlation 
can be assumed, but making minimal assumptions regarding the nature of the 
function itself. The similarity measure we propose is inherited from probability 
theory and is known as the correlation ratio. 

2 T h e o r y  

We give an intuitive argument to introduce our approach. Suppose that we have 
two registered images, X and Y. If we randomly select voxels in their overlap- 
ping region, we will observe that the intensity couples we get are statistically 
consistent: all the voxels having a certain intensity i in X may also have clus- 
tered intensities in Y (possibly very different from i). Depending on the images 
type, any iso-set X = i might project to one or several such clusters. In the 
case of a single cluster per iso-set, the intensity in Y could be approximately 
predicted from the intensity in X, by applying a simple function. This argument 
is valid only if the images are correctly registered. Thus, we could use the degree 
of functional dependence between X and Y as a matching criterion. 

How now to measure the functional dependence? In the above thought ex- 
periment, images X and Y are considered as random variables. Evaluating the 
functional dependence between two variables comes down to an unconstrainded 
regression problem. Suppose we want to determine how well X approximates Y. 
A natural approach is: 

(1) find the function r that best fits Y among all possible functions of X, 
(2) measure the quality of fitting. 
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2.1 A solution to problem (1) 

One must beforehand determine a cost function in order to perform regression. 
A convenient choice is variance, which measures a variable's average dispersion 
around its mean value. Thus, it naturally imposes a constraint of proximity in 
the sample space. Using variance, our problem is to find 

q~* = argmin Vat [II - r (1) 
r 

If no constraint is imposed on the functions r (such as linearity), eq (1) is 
known to be minimized uniquely by the conditional expectation of Y in terms 
of X [1(3]. Recall that  it is defined by, 

E(YIX)  = r with r = f y p ( y l x )  dy, 

where p(y[x) denotes the conditional pdf of Y assuming the event X = x. To a 
given event corresponds a given conditional pdf. 

2.2 A solution to  problem (2) 

Now that we have optimally estimated Y in terms of X, we use a result known 
as the total variance theorem [12, 11], which relies on the orthogonality principle 
well-known in Kalman filtering: 

Vat(Y)  = Yar [E(YIX)] + Vat  [Y - E(YIX)] .  (2) 

This may be seen as an energy conservation equation. The variance of Y 
is decomposed as a sum of two antagonist "energy" terms: while Var [E(YIX)] 
measures the part of Y which is predicted by X, Var ~x" - E(YIX)] measures 
the part of Y which is functionally independent of X. 

From eq (2), we remark that Vat [Y - E(YIX)] can actually be low for two 
distinct reasons: either Y is well "explained" by X (Vat [E(YIX)] is high), or 
Y gives little information (Vat(Y) is low). In a registration problem, Vat(Y)  
can only be computed in the overlapping region of the images. It may be arbi- 
trarily low depending on the region size. Thus, minimizing Vat  [Y - E(YIX)] 
would tend to completely disconnect the images. Notice that for exactly the 
same reasons, mutual information is preferred to conditional entropy [16]. 

It seems more reasonable to compare the "explained" energy of Y with its 
total energy. This leads to the definition of the correlation ratio: 

Vat  [E(YIX)] Vat  [Y - E(Y]X)] 
~/(YIX) = Vat(Y)  r ~/(YIX) = 1 - Var(Y) (3) 

The correlation ratio measures the functional dependence between X and Y. 
It takes on values between 0 (no functional dependence) and 1 (purely determin- 
istic dependence). Due to the use of a ratio instead of a subtraction, ~/(Y]X) is 
invariant to multiplicative changes in Y, i.e. Vk, ~I(kY]X) = ~7(Y]X). Also note 
that the correlation ratio is asymmetrical by nature since the two variables fun- 
damentally do not play the same role in the functional relationship; in general, 
~(YIX) r ~(XIY). 



1119 

2.3 Application to registration 

In order to compute the correlation ratio between two images, we must be able to 
define them as random variables, that is determine their marginal and joint pdf's. 
A common technique consists of normalizing the image pair 2D-histogram [4, 5, 
2]. Then, the images may be seen as discrete random variables [11]. Viola [16] 
has proposed a continuous approach using Parzen density estimates. 

If we choose the discrete approach, there is no need to manipulate explicitly 
the images 2D-histogram. Instead, the correlation ratio can be computed recur- 
sively by accumulating local computations. Let 12 denote the images overlapping 
region, and N -- Card(12) the total number of voxels it contains. We consider 
the iso-sets of X, 12~ = {w E 12, X(oJ) = i} and their cardinals N~ = Card(12i). 
The total and conditional moments (mean and variance) of Y are: 

a2 I I =-~ ~ Y(w) 2 - m  2, m = - ~  E Y(w). 
wE~ wE~ 

2 1 2 1 E Y(w). 
a, = ~ ~en,E Y(w)2 - m , ,  m, = ~ . e n ,  

Starting from eq (3), we obtain a very simple expression for the correlation 
ratio (the complete proof can be found in [11]): 

1 E Ni a~. (4) 1 - y (YIX)_  g a  2 
i 

The algorithm derived from these equations does not require the computa- 
tion of the images 2D-histogram. This makes an important difference with mu- 
tual information. Classical algorithms for computing mutual information have 
an O(n=n~) complexity, n= and n~ being the number of intensity levels in the X 
and Y images, respectively. Our computation of the correlation ratio has only 
an O(n~) complexity, and is independent from n~. 

3 R e l a t e d  m e a s u r e s  

The correlation ratio generalizes the correlation coefficient, which is a symmet- 
rical measure of linear dependence between two random variables: 

Coy(X, y )2 
p(X,Y) = Var(X)Var(Y)" 

The correlation coefficient is closely related to the various correlation mea- 
sures that have been used in image registration. The linear dependence being a 
stronger constraint than the functional dependence, it can be shown that [12, 
11], 

n(YlX) > p(X, Y), y(XIY ) _> p(X, Y). 
We now analyze two similarity measures which are based on standard statis- 

tics but not limited to the case of linear correlation. 
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3.1 Woods criterion 

The heuristic criterion devised by Woods et al. [21] was originally intended for 
PET-MR registration, but it has also been used with other modalities [2]. This 
turns out to be very similar to the correlation ratio. According to the notations 
introduced in section 2.3, the Woods criterion can be written as follows: 

1 (5) W(YIX)  = g m--~' 
i 

where the notation W(YIX ) is used in order to emphasize that the criterion 
is asymmetrical, such as the correlation ratio. Notice that W(Y]X) has to be 
minimized, just like 1 - rl(YIX). 

Though different, eq (5) and eq (4) express the same basic idea. Even so, 
2 we can identify two differences. First, the correlation ratio sums variances, a~ 

whereas the Woods criterion sums normalized standard deviations, aJmi. Sec- 
ond, the multiplicative invariance property is achieved in the correlation ratio 
via a global division by a2; in the Woods criterion, every term of the sum is 
divided by a conditional mean, mi. 

3.2 Weighted neighbor likelihood 

In [16], Viola already proposed performing registration by evaluating the degree 
of functional dependence between two images. This approach is very analogous 
to that we have proposed in section 2. First, a weighted neighbor approximator is 
used to estimate the Y image in terms of the X image. Second, a similarity mea- 
sure is obtained by considering the estimation log-likelihood (under hypotheses 
we won't discuss here). 

We have previously shown [11] that the approximator devised by Viola is 
nothing but the conditional expectation of Y in terms of a variable, X, whose 
pdf is the Parzen estimate of X. Furthermore, the weighted neighbor likelihood 
is negatively proportional to the estimation error: 

L(YIX ) = -k  Vat [ Y -  E(YIX)] , k > O. 

Maximizing the weighted neighbor likelihood is in fact equivalent to mini- 
mizing the numerator in eq (3) (up to the use of Parzen windowing). However, 
the correlation ratio involves a division by Var(Y), which plays a critical role in 
registration problems since it prevents disconnecting the images (see section 2.2). 

4 Resul t s  

We tested voxel-based 3D multimodal registration over ten patient brain datasets. 
For each patient, the following images were available : 

- MR, T1 weighted (256 • 256 • 20/26 voxels of 1.25 • 1.25 • 4ram 3) 
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- MR, T2 weighted (256 x 256 • 20/26 voxels of 1.25 • 1.25 • 4ram 3) 
- CT (512 • 512 • 28/34 voxels of 0.65 • 0.65 • 4ram 3) 
- PET (128 • 128 • 15 voxels of 2.59 • 2.59 • 8tara a) 

All images were stored with one byte per voxel. The gold standard transfor- 
mations between each modality were known thanks to a prospective, marker- 
based registration method [19]. No preprocessing of the images was done. 

We implemented an algorithm similar to that of Maes et al. [5], employing 
Powell's multidimensional direction set method as a maximization scheme. Four 
similarity measures were tested: the correlation ratio (CR), mutual information 
(MI), the correlation coefficient (CC), and the opposite of the Woods criterion 
(OW). The choice of the opposite is only for consistency: OW has to be maxi- 
mized like MI, CR, and CC. In all registration experiments, the transformation 
was initialized as the identity. 

We used two different interpolation techniques: trilinear interpolation (TRI) 
and trilinear partial volume interpolation [5] (PV). The results that are presented 
here were obtained using PV interpolation; on the whole, they are better than 
those obtained with TRI interpolation. 

After each registration, a '%ypical" error c was computed in the following way. 
We selected eight points in the transformed image, approximately situated on the 
skull surface. Registration errors corresponding to these points were computed 
according to the marker-based transformation, and then averaged to obtain e. 

Table 1. Mean and median of the registration typical errors (based on positions of 
stereotaxic markers) obtained over ten intra-patient experiments. 

Experiment 
Tl-to-T2 

CT-to-T1 

PET-to-T1 

Measure 
MI 
CR (X:T2) 
OW (X:T2) 
CC 
MI 
CR (X:T1) 
MI 
CR (X:T1) 
OW (X:T1) 

Mean e (mm)lMedian e (ram) 
4.30 1.48 
1.93 1.46 
2.65 2.00 
2.42 2.37 
2.52 2.00 
3.27 3.24 
5.87 5.58 
4.60 3.65 
7.69 7.62 

Statistics on typical errors over the ten patients are shown in table 1. We got 
non sensible results with CC in CT-to-T1 and PET-to-T1 registration, and with 
OW in CT-to-T1 registration. Conversely, MI and CR demonstrated suitable 
accuracy levels for every modality combination. MI gave the best results for CT- 
to-T1 registration, while CR was better for PET-to-T1 registration. In the case 
of Tl-to-T2 registration, CR and MI generally provided the best results, but MI 
failed in two cases. Notice that for CT-to-T1 registration, the CT images were 
subsampled by factors 2 x 2 x 1 in the x, y, and z direction, respectively; due to 
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the large dimensions of the CT images, registration at  full resolution was indeed 
too t ime consuming. 

Several subsampling factors were also tested for every modality combination 
in order to speed up the registration process with minimal loss in terms of 
accuracy. A typical drawback of subsampling is to introduce local maxima in 
the similarity measure so that  the global maximum becomes difficult to track. 

Table 2. The correlation ratio performances depending on resolution. 

Experiment Subsampling Mean e (mm) Median e (ram) 
Tl-to-T2 (2 x 2 x 1) 1.90 1.48 

(4 x 4 x 1) 2.01 1.67 
CT-to-T1 (4 x 4 x 1) 4.23 3.55 

(8 x 8 x 1) 6.65 5.96 
PET-to-T1 (2 x 2 • 1) 6.82 6.20 

(4 x 4 x 1) 11.65 11.19 

The influence of subsampling on the correlation ratio performances was re- 
markably moderate (see table 2). While CR allowed good registration at rel- 
atively low resolutions, other studies [11] (which could not be presented here) 
qualitatively demonstrated that  CR was less sensitive to subsampling than MI 
and OW. 

Fig. 3. Multimodal registration by mazimization of GR. Images from left to right : 
MR-T1, MR-T2, CT, and PET. The images are resampled in the same reference frame 
after registration. Gontours extracted from the MR-T1 are superimposed to each other 
modality in order to visualize the quality of registration. 
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5 D i s c u s s i o n  a n d  c o n c l u s i o n  

Our experiments tend to show that assuming a functional correlation between 
certain multimodal images is not critical. Even if this is an approximation, no- 
tably in the CT-MR case (see [18] for a discussion), a preprocessing step might 
validate it. Van den Elsen et al. [14] have proposed a simple intensity mapping 
to the original CT image so that bone and air appear in the same intensity range 
as is the case in MR images. Then, low intensities in MR (air and bone) may 
project to nearby intensities in CT. Another possible strategy for CT-MR reg- 
istration could be to use the correlation ratio for a quick guessing of the correct 
transformation (using subsampling), and then mutual information for probably 
more accurate alignment. 

The case of PET images is particular because they are much more distorted 
than MR or CT. This might explain why mutual information is relatively inaccu- 
rate in PET-T1 registration. It is generally admitted that today Woods method 
is the best one for this specific problem. In some way, our results corroborate 
this observation, suggesting that taking into account nearby intensities in PET 
images might be crucial. Mutual information seems to be better adapted to 
low-noise images. 

Finally, the discrepancies found experimentally between the correlation ratio 
and the Woods criterion are surprising since these two measures are formally 
based on similar considerations (see section 3.1). It seems that the correlation 
ratio gives not only a theoretical justification to the Woods criterion but also 
perceptible practical improvements. 
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