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Abstract. We present a new approach for the non-rigid registration of contrast- 
enhanced breast MRI using normalised mutual information. A hierarchical trans- 
formation model of the motion of the breast has been developed: The global mo- 
tion of the breast is modelled using affine transformation models while the local 
motion of the breast is modelled using spline-based free-form deformation (FFD) 
models. The algorithm has been applied to the fully automated registration of 3D 
breast MRI. In particular, we have compared the results of the proposed non- 
rigid registration algorithm to those obtained using rigid and affine registration 
techniques. The results clearly indicate that the non-rigid registration algorithm 
is much better able to recover the motion and deformation of the breast than rigid 
or affine registration algorithms. 

1 Introduction 

The application of voxel-based similarity measures for image registration has shown 
promising results over recent years. In particular, voxel-based similarity measures based 
on joint entropy [ 1 ], mutual information [2-5] and normalised mutual information [6-8] 
have been shown to align images acquired with different imaging modalities robustly. 
However, most of the approaches are either limited to rigid or affine transformations or 
global spline warps with a very limited number of  degrees of  freedom [9]. 

The registration of breast MRI is an important task which aids the detection of breast 
cancer. Currently, the detection and diagnosis of  breast cancer primarily relies on X-ray 
mammography.  Even though mammography is highly sensitive, there are a number of  
disadvantages such as the projective nature of  the images and the exposure to radiation. 
This has led to the investigation of alternative imaging modalifies like MRI for the 
detection of breast cancer. Typically, the detection of breast cancer in MRI requires the 
injection of a contrast agent whose uptake, it is proposed, will significantly increase 
the ability to differentiate between different types of  malignant and healthy tissue. To 
quantify the rate of uptake, a 3D MRI scan is acquired prior to the injection of contrast 
media, followed by a dynamic sequence of 3D MRI scans. The rate of  uptake can be 
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estimated from the difference between pre- and post-contrast images. However, this 
assessment is complicated by misregistrations caused by patient motion, in particular 
respiratory motion. 

To facilitate the analysis of pre- and post-contrast enhanced MRI, Zuo et al. [10] pro- 
posed a registration algorithm which minimises the ratio of variance between images. 
However, their algorithm is based on the assumption that the breast is only undergoing 
rigid motion. Kumar et al. [11] proposed a non-rigid registration technique which uses 
an optical-flow type algorithm and is based on the assumption that the intensities in the 
pre- and post-contrast enhanced images remain constant. To overcome the problems 
caused by non-uniform intensity change, Hayton et al. [12] developed a pharmacoki- 
netic model which is used for an optical-flow registration algorithm. 

In this paper we will present a new approach for the non-rigid registration of 3D breast 
MRI. We will use a hierarchical transformation model which captures the global and 
local motion of the breast. Normalised mutual information is used as a voxel-based 
similarity measure which is insensitive to changes of intensities between pre- and post- 
contrast enhanced images and independent of the amount of image overlap. 

2 Image Registration 

The goal of image registration in contrast-enhanced breast MRI is to relate any point in 
the post-contrast enhanced sequence to the pre-contrast enhanced reference image, i.e. 
to find the optimal transformation T : (x, y, z) ~ (x', y', z') which maps any point in 
the dynamic image sequence I(x,  y, z, t) at time t into its corresponding point in the 
reference image I(x' ,  y', z', to) taken at time to. In general, the motion of the breast is 
non-rigid so that rigid or affine transformations alone are not sufficient for the motion 
correction of breast MRI. Therefore, we develop a combined transformation T which 
consists of a global transformation and a local transformation: 

T(x ,  y, z) = Tgtobal (x, y, z) + Ttocat (x, y, z) (1) 

2.1 Global motion model 

The global motion model describes the overall motion of the breast. The simplest choice 
is a rigid transformation which is parameterised by six degrees of freedom describing 
the rotations and translations of the breast. A more general class of transformations are 
affine transformations which have six additional degrees of freedom describing scaling 
and shearing. In 3D, an affine transformation can be written as 

fOZll 0~12 OLI3~ (i)fOLx4~ 
Tgtob~t(x,y,z) = } c~21 c~22 c~23 / + } c~24 ~ (2) 

where the coefficients c~ parameterise the twelve degrees of freedom of the transfor- 
mation. In a similar fashion the global motion model can be extended to higher-order 
global transformations such as trilinear or quadratic transformations [13]. 
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2.2 Local motion model 

The affine transformation captures only the global motion of the breast. An additional 
transformation is required which models the local deformation of the breast. The nature 
of the local deformation of the breast can vary significantly across patients and with age. 
Therefore, it is difficult to describe the local deformation via parameterised transforma- 
tions. Instead we have chosen a free-form deformation (FFD) model based on B-splines 
[14, 15] which is a powerful tool for modelling 3D deformable objects. The basic idea 
of FFDs is to deform an object by manipulating an underlying mesh of control points. 
The resulting deformation controls the shape of the 3D object and produces a smooth 
and C 2 continuous transformation. 

To define a spline-based FFD we denote the domain of the image volume as ~ = 
{ (x ,y ,z )  1 0 < x  < X ,  0 < y < Y ,  0 < z < Z } . L e t ~ d e n o t e a n x  Xny • 
of control points r with uniform spacing. Then, the FFD can be written as the 3D 
tensor product of the familiar 1D cubic B-splines: 

3 3 3 

Tlocat(x,y,z) = E E E Bt(u)Bm(v)Bn(w)d~i+t,j+m,k+n (3) 
/ = 0  m = O  n : O  

where/ . . . .  [ ~ - J - l , j  = L~J 1, k L ~ J - l , u  ~-x- L~J,v = _u_. _Ln~j,w=_U_- 
z [~TJ and where Bt represents the/-th basis function of the B-spline [ 14, 15] 

In general, the local deformation of the breast should be characterised by a smooth 
transformation. To constrain the spline-based FFD transformation to be smooth, one 
can introduce a penalty term which regularizes the transformation. The general form of 
such a penalty term has been described by Wahba [16]. In 3D, .the penalty term takes 
the following form: 

t-O-~-x2J+t-O--~y2J+t-O-~z~J+2[\Oxy j \Oxz] \Oyz] J (4) 
This quantity is the 3D counterpart of the 2D bending energy of a thin-plate of metal and 
defines a cost function which is associated with the smoothness of the transformation. 
Note that the regularization term is zero for any affine transformations and therefore 
penalises only non-affine transformations. 

The degree of local deformation which can be modelled by B-spline FFDs depends es- 
sentially on the resolution of the mesh of control points 4. This enables a hierarchical 
multi-resolution approach in which the resolution of the control mesh is increased along 
with the image resolution in a coarse to fine fashion. Finally, B-splines are locally con- 
trolled splines which makes them computationally efficient even for a large number of 
control points compared to thin-plate splines [ 17] or elastic-body splines [ 18]. 

2.3 Normalised Mutual Information 

To relate a post-contrast enhanced image to the pre-contrast enhanced reference image, 
we must define a similarity criterion which measures the degree of alignment between 
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both images. Given that the image intensity might change after the injection of the con- 
trast agent one cannot use a direct comparison of image intensities, i.e. sum of squared 
differences or correlation, as a similarity measure. Alternatively one can use mutual in- 
formation (MI) which has been independently proposed by Collignon [2] and Viola [3, 
4] as a voxel-based similarity measure. Mutual information is based on the concept of 
information theory and expresses the amount of information that one image A contains 
about a second image B, 

Cs~.~m~uy(A, B) = H(A) + H(B) - H(A, B) (5) 

where H(A), H(B) denote the marginal entropies of A, t3 and H(A, B) denotes their 
joint entropy which are calculated from the joint histogram of A and/3. If both images 
are aligned the mutual information is maximised. It has been shown by Studholme [6, 
7] that mutual information itself is not independent of the overlap between two images. 
To avoid any dependency on the amount of image overlap, Studholme suggested the 
use of normalised mutual information (NMI) as a measure of image alignment: 

H(A) + H(B) (6) 
Csimit~rity (A, B) = H(A, B) 

Similar forms of normalised mutual information have been proposed by Maes et al. [8]. 

To find the optimal transformation we minimise a cost function as a combination of the 
cost associated with the smoothness of the transformation Csmooth in eq. (4) and the 
cost associated with the image similarity Csimit,~,.it~ in eq. (6): 

C (T) = -C~imit~itu (I(to), T( I ( t ) ) )  + )~Csmooth (T) (7) 

Here ), is the weighting parameter which defines the trade-off between the alignment of 
the two image volumes and the smoothness of the transformation. We have employed 
a simple gradient descent technique to minimise the cost function. For computational 
efficiency, the optimisation proceeds in a multi-resolution fashion: Initially, the affine 
transformation parameters are optimised at increasing levels of image resolution. Dur- 
ing the subsequent refinement the non-affine transformation parameters are optimised 
at increasing levels of resolution of the control point mesh. 

3 Results 

We have applied the registration algorithm to volunteer as well as patient data. To test 
the ability of the algorithm to correct the non-rigid motion of the breast, two separate 
3D MR scans of four volunteers were acquired (aged between 28 and 47 years). After 
the first scan each volunteer was asked to move inside the scanner. For the volunteer 
studies, a 3D FLASH sequence was used with TR = 12ms, TE = 5ms, flip angle = 35 ~ 
FOV = 340tara and coronal slice orientation. The MR image were acquired on a 1.5 
Tesla Siemens Vision MR system without contrast enhancement. The images have a 
size of 256 x 256 x 64 voxels and spatial resolution of 1.33ram x 1.33ram x 2.hmm. 
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Transformation SSD (mean) SSD (variance) 
- 38.52 53.90 

Rigid 23.09 33.38 
Affine 20.67 29.84 

Affine + FFD (20ram) 16.08 23.43 
Affine + FFD (15ram) 14.25 20.91 
Affine + FFD (10ram) 13.07 19.25 

CC 
0.8978 
0.9648 
0.9736 
0.9845 
0.9878 
0.9899 

Table 1. Comparison of the average registration error of the volunteer studies in terms of squared 
sum of intensity differences (SSD) and correlation coefficient (CC) for different types of trans- 
formation. The spline-based FFD has been evaluated at a control point spacing of 20ram, 15ram 
and lOmm. 

An example of these images is shown in Figure 1. The effect of the misregistration due 
to the motion of the breast is clearly visible in the difference image. The corresponding 
registration results based on different transformation models are shown in Figure 2. To 
assess the quality of the registration in these images in more detail, we have calculated 
the mean and variance of the squared sum of intensity differences (SSD) ,  

S S D  = _1 V / E ( I ( x ,  ' y ' ,  z,, to) - I ( T ( x ,  y, z), t l ))  2 (8) 
n 

as well as the correlation coefficient (CC) 

C C  = E ( I ( x "  y'' z' ,  to) - I ( t o ) ) ( I ( T ( x ,  Y, z), t l )  - 7(t l ))  (9) 

~ / E ( I ( x ' ,  y', z', to) - I( to))  2 E ( I ( T ( x ,  y, z), t l )  - I ( t l ) )  2 

Here I( to) ,  I ( t l )  denote the average intensities of the images before and after motion 
and the summation includes all voxels within the overlap of both images. In these im- 
ages, the squared sum of intensity differences and the correlation coefficient provides 
a reasonable metric for the assessment of misregistration as the position of the breast 
tissue changes but the tissue composition and hence image intensity does not. Since the 
motion of both breasts is normally uncorrelated, we have manually defined a region of 
interest (ROI) around each breast and then registered both ROIs independently. 

Table 1 summarises the results of the registration quality of the volunteer datasets using 
different transformation models. We have compared three different types of transforma- 
tions: Pure rigid and affine transformations as well as the proposed non-rigid transfor- 
mation model which is a combination of an affine transformation and spline-based FFD. 
The results clearly show that the registrations which are based on rigid or affine transfor- 
mations improve the correlation between the images before and after motion. However, 
both transformation models perform significantly worse than the proposed non-rigid 
transformation model. The results also show that the non-rigid registration performs 
better as the resolution of the control point mesh of the spline-based FFD increases. 
While a control point spacing of 20ram yields already improved correlation compared 
to affine transformations, a control point spacing of 15ram or less yields even higher 
correlation. The main reason for this is the increased flexibility of the spline-based FFD 
to describe local deformations of the breast as the number of control points increases. 
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Transformation SSD (mean) SSD (variance) 
- 149.64 205.13 

Rigid 72.78 91.75 
Affine 65.12 78.66 

Affine + FFD (20mm) 57.40 68.27 
Affine + FFD (15mm) 54.54 64.69 
Affine + FFD (10ram) 50.13 58.52 

CC 
0.8811 
0.9721 
0.9784 
0.9836 
0.9852 
0.9877 

Table 2. Comparison of the registration error in terms of squared sum of intensity differences 
(SSD) and correlation coefficient (CC) for the patient study in Figure 3. The region of increased 
uptake corresponding to the tumour has been excluded. 

We have also applied the algorithm to a patient data set with contrast-enhanced MRI. 
An example of a pre- and post-contrast enhanced image of the patient data set without 
registration is shown in Figure 3. The difference image shows a substantial amount of 
motion artefacts. Again, we have used rigid, affine and the proposed non-rigid trans- 
formation model for the registration of these images. Figure 4 shows the post-contrast 
enhanced image and the corresponding difference images after registration. The results 
demonstrate that all three registrations techniques lead to a significantly improved lo- 
calisation of the uptake of contrast agent. Again, we have calculated the quality of the 
registration in terms of squared sum of intensity differences (SSD) and correlation co- 
efficient (CC). The region of increased uptake corresponding to the tumour has been 
excluded from the calculations. The results are summarised in Table 2 and show that 
the non-rigid transformation model is better able to correct the motion of the breast than 
the rigid and affine transformations. 

4 Discussion 

We have developed a fully automated algorithm for the non-rigid registration of 3D 
breast MRI based on normalised mutual information. The algorithm uses a non-rigid 
transformation model to describe the motion of the breast in dynamic MR images. The 
proposed combination of affine transformations and spline-based FFDs provides a high 
degree of flexibility to model the motion of the breast. In contrast to physics-based 
deformation models [ 19], the algorithm makes no assumptions about the elastic proper- 
ties of the breast tissue. Even though physics-based deformation models might seem an 
attractive alternative, for example to model additional constraints such as incompress- 
ibility, they are usually difficult to evaluate and verify. Moreover, the elastic properties 
of the breast tissues can vary significantly across patients and with age which renders 
the application of such models problematic. 

The experimental results have shown that the non-rigid registration of 3D breast MRI 
can significantly reduce motion artefacts between images. The results have also demon- 
strated that in many cases rigid or affine registration techniques are not sufficient to cor- 
rect motion in 3D breast MRI. The registration of these images currently takes between 
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Fig. 1. Example of misregistration caused by motion of a volunteer: (a) before motion, (b) after 
motion and (c) after subtracting (b) from (a) without registration. 

Fig. 2. Example of different transformations on the registration for the volunteer study in Figure 
1: After (a) rigid, (b) affine and (c) non-rigid registration. The corresponding difference images 
are shown in (d) - (f). 

15 and 30 rains, of CPU time on a Sun Ultra 1 workstation which makes routine appli- 
cation in a clinical environment possible. We have also demonstrated the applicability 
of  the algorithm to the motion correction in contrast-enhanced MRI. However, further 
work is needed to assess and evaluate the performance of  the algorithm in these images. 
Future work will involve the application of  the proposed registration algorithm to data 
from the MRC-supported UK study of  MRI as a method of  screening women at genetic 
risk of  breast cancer. 
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Fig. 3. Example of rnisregistration in a contrast-enhanced patient study: (a) before injection of 
the contrast media, (b) after injection of the contrast media and (c) after subtraction of (a) and (b) 
without registration. 

Fig. 4. Example of different transtbrmations on the registration for the patient study in Figure 3: 
After (a) rigid, (b) affine and (c) non-rigid registration. The corresponding difference images are 
shown in (d) - (f). 
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