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A b s t r a c t .  This paper describes a new method of non-rigid registration 
using the combined power of elastic and statistical shape models. The 
transformations are constrained to be consistent with a physical model 
of elasticity to maintain smoothness and continuity. A Bayesian formula- 
tion, based on this model, on an intensity similarity measure, and on sta- 
tistical shape information embedded in corresponding boundary points, 
is employed to find a more accurate and robust non-rigid registration. 
A dense set of forces arises from the intensity similarity measure to ac- 
commodate complex anatomical details. A sparse set of forces constrains 
consistency with statistical shape models derived from a training set. A 
number of experiments were performed on both synthetic and real med- 
ical images of the brain and heart to evaluate the approach. It is shown 
that statistical boundary shape information significantly augments and 
improves elastic model based non-rigid registration. 1 

1 I n t r o d u c t i o n  

Comparing function or morphology between individuals requires non-rigid reg- 
istration, because the detailed anatomical  structure differs, sometimes greatly, 
between individuals. The goal of our non-rigid registration is to remove structural  
variation between individuals by matching an atlas image to each individual, or 
study, image, in order to have a common coordinate system for comparison. 
Shape differences between the atlas and s tudy 's  anatomy are contained in the 
non-rigid transformation.  

There have been many approaches to non-rigid registration in recent years 
[2] [31 [4] [6] [8] [9] [10] [15]. Usually, the t ransformation is constrained in some 
way because of the ill-posedness (i.e. in this case, the existence of many  possible 
solutions) of the problem. Physical models, for example, linear elastic models, 
are widely used to enforce topological properties on the deformation and then 
constrain the enormous solution space [2] [4] [8] [9] [10]. Here, we are particularly 
interested in intensity based deformation using elastic models. Our goal is to 
incorporate statistical shape information into this type of elastic model based 
registration and to develop a more accurate and robust algorithm. 

Christensen et al. [4] present two physical models for non-rigid registration of 
the brain. The transformations are constrained to be consistent with the physical 
properties of deformable elastic solids in the first method and those of viscous 

1 This work was supported in part by a grant from the Whitaker Foundation. 
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fluids in the second. Viscous fluid models are less constraining than elastic mod- 
els and allow long-distance, nonlinear deformations of small subregions. In these 
formulations, however, no matter what model is used, elastic solid [10], viscous 
fluid [5], or other physics model such as hyperelasticity [11], the deformed con- 
figuration of the atlas is always determined by driving the deformation using 
only pixel-by-pixel intensity difference between images. In many applications, 
however, this kind of warping is under-constrained and admits to unreasonable 
registration. Corresponding anatomical structure may shift or twist away from 
one position to another (Fig.l(a)(b)). Even if the driving force is very small, the 
transformation may not be accurate enough, or may even be completely wrong, 
even though the deformed atlas and study appear similar (Fig.l(b)(c)(d)). In 
these circumstances, if shape information had been included, the correct map- 
ping or registration could have been found (Fig.l(g)(h)). In addition, due to the 
use of the gray-level gradient of the deformed atlas in the body force formula- 
tion [4], lower contrast objects deform much slower than high-contrast objects, 
independent of their importance. Sometimes objects do not deform well because 
their gradient is too low compared to high-gradient objects (Fig.2(c)(d)). With 
the incorporation of the shape information, the result is improved (Fig.2(h)). 
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Fig. 1. Comparison of synthetic image (64 x 64) non-rigid registration methods. (a): 
atlas image; (b): study image; (c): deformed atlas image by Christensen&Miller's elastic 
method [4] [10] (based on our implementation, discussed in Section 5); (d): correspond- 
ing unreasonable vector map of (c) (The two bumps on the right side do not slide up to 
the corresponding bumps, as desired); (e): atlas image control points; (f): study image 
control points; (g): deformed atlas image by our method; (h): vector map of our elastic 
transformation showing correct tracking of features. 

Davatzikos and Prince [8] propose a method where they first identify the 
boundaries of homologous brain regions in two images to be registered (e.g., cor- 
tex, ventricles, etc.), and establish a one-to-one mapping between them. Based 
on this mapping, they deform the boundaries in one image into those in the other 
image. The rest of the image is deformed by Solving the equations describing the 
deformation of an elastic body using the boundary deformation as input. In this 
approach, although the mapping may be accurate on the boundary, the farther 
away the structure is from the boundary, the more error there is, because only 
information from object boundaries is used for registration. Also, the localization 
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Fig. 2. Comparison of synthetic multi-gradient image (64 • 64) non-rigid registration 
methods. (a): atlas image; (b): study image; (c): deformed atlas at iteration 20 by 
Christensen&Miller's elastic method [4] [10] ; (d): deformed atlas at iteration 150 by 
Christensen•Miller's elastic method; (e): atlas image control points; (f): study image 
control points; (g): deformed atlas at iteration 150 by Davatzikos's elastic method [8], 
with body force solely determined by corresponding pairs of control points; (h): de- 
formed atlas at iteration 150 by our elastic method showing good convergence without 
any boundary jiggling effect. 

of the object boundary depends on the density of the boundary control points. 
The resulting boundaries can have quite severe errors producing a jiggling effect 
when the boundary control points are not dense enough, as shown in Fig.2(g). 
In our approach, we also use intensity information and thus the density of the 
control points is not as important (Fig.2(h)). In addition, the boundary informa- 
tion used in their approach is derived by an active contour algorithm [8], and it 
does not include any shape information which we believe is crucial in non-rigid 
registration for medical images. 

The algorithm we employed is based on an elastic model, a gray level similar- 
ity measure and a consistency measure between corresponding boundary points. 
The statistical shape information is embedded in the boundary finding with 
correspondence process [16] applied to the study. This method uses statistical 
point models with shape, and shape variation, generated from sets of examples 
by principal component analysis of the covariance matrix. The power of elastic 
and statistical shape models are combined in our approach using a Bayesian 
framework. 

2 E l a s t i c  M o d e l  

There is no true elastic model for deformation because, for example, one anatom- 
ical structure does not literally result from the deformation of another structure. 
We use an analogous linear elastic model to control the deformation. Without 
it, the results could be almost completely arbitrary. 

An Eulerian reference is used in our elastic model formulation. In this frame, a 
particle is tracked with respect to its final coordinates. The non-rigid registration 
is defined by the transformation corresponding to a homeomorphic mapping of 
the coordinate system, defined in 2D by: 

w = (x,y) --+ ( x -  u = ( w ) , y -  uy(w)) (1) 
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where u(w) = [u=(w), Uy(~)] T is the displacement at each pixel w whose coor- 
dinate is denoted as (x, y). This mapping allows for the detailed local transfor- 
mation into the specific anatomy of the individual, or study. 

We want to find this transformation that best matches the atlas with the 
study, constrained by the elastic model. The formulation of the elastic model 
is similar to that in [4]. For linear elastic solids, the force is proportional to 
the displacement. The spatial transformation satisfies the partial differential 
equation (PDE): 

+ + Z ) v ( v .  u) = F(u)  (2) 
with certain boundary conditions such as that u(w) = 0 for w on the image 
boundary. In this equation, # and ~ are Lam6 constants. The body force, F(u),  
is the driving function that deforms the atlas into the shape of the study, which 
will be formulated in detail in Section 4. 

3 S t a t i s t i c a l  S h a p e  M o d e l  B a s e d  B o u n d a r y  F i n d i n g  

Numerous deformable model based boundary finding methods have been pro- 
posed [7] [13] [14]. We have developed a statistical shape model based boundary 
finding with correspondence algorithm, which has been described in detail in 
[16]. Global shape parameters derived from the statistical variation of object 
boundary points in a training set are used to model the object [7]. A Bayesian 
formulation, based on this prior knowledge and the edge information of the in- 
put image, is employed to find the object boundary with its subset points in 
correspondence with the point sets of boundaries in the training set. 

Given m aligned examples, and for each example, a set of N labeled points, 
Li = (x~(1),yi(1),x~(2_),y~(2),'..,xi(N),yi(N)) T, (i = 1 ,2 , . . . ,m) ,  we calcu- 
late the mean shape, L, and the covariance about the mean, Ctr~i,~ing. The t 
eigenvectors q~ of Ctr~ini,~g corresponding to the largest t eigenvalues, Ai, give a 
set of uncorrelated basis vectors, or modes of variation, for a deformable model. 
A new example can be calculated using L = L + Qa, where Q = (ql[q2[ "'" [qt) 
is the matrix of eigenvectors and a = (al, a2,.. . ,  at) T is the vector of weights, 
or shape parameters,to be determined. As a varies from zero, the corresponding 
shapes will be similar to those in the training set. 

Given the statistical models, our aim is to match them to particular ex- 
amples of structure in the individual images, and find the shape parameters, 
a : ( a l ,  a 2 , ' " ,  at) T, and pose parameters: scale s, rotation 0, and translation 
Tx, Ty. The combined pose and shape parameter vector to be determined is 
p = (s,O,T~,Ty,al,a2,...,a,). 

A Bayesian formulation leads to ([16]): 

[ _ N 
M(p) = ~ (PJ ] 1 

- "20-~ j + -  E E(x(p,n),y(p,n))  
j = l  0"2 n~-I 

(3) 

where mj is the mean of pj; aj is the standard deviation for each of the param- 
eters and a n is the standard deviation of the white zero mean Gaussian noise 
associated with the image noise model [16]. This equation is the maximum a 
posteriori objective incorporating a prior bias to likely shapes and poses (first 
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term) and a match to edges in the image (second term). Additional features can 
easily be incorporated. 

4 Elastic Model Incorporating Statistical Shape 

While elastic models are useful in non-rigid registration, they are limited by 
themselves because they are too generic. With statistical information, we have 
a stronger bias to augment the elastic model. Statistical models can be powerful 
tools to directly capture the character of the variability of the individuals being 
modeled. Instead of relying on an elastic model to guide the deformation in a 
roughly plausible way, the statistics of a sample of images can be used to guide 
the deformation in a way governed by the measured variation of individuals. 
Thus, this paper proposes an algorithm which uses an elastic model, yet incor- 
porates a statistical shape model to constrain solutions to more anatomically 
consistent deformations. 

We pose the above displacement estimation problem in a maximum a pos- 
teriori framework. As input to the problem, we have both the intensity im- 
age of the study (individual), Is(w),  and the boundary points of the study 
bs(p, n) = (Xs(p, n), y~(p, n)), for n = 1, 2 , . . . ,  N, given the shape and pose pa- 
rameters, p, which are derived from the statistical shape model based boundary 
finding [16]. Thus, we want to maximize: 

Pr(u, Is, bs (p)) 
er(ulI , ,bs(p)) = Pr(Is,bs(p)) (4) 

Ignoring the denominator, which does not change with u, and by using Bayes 
rule, our aim is to find: 

arg max Pr(u[I,, b, (p)) - arg max Pr(b, (p) [u,/8) Pr(I8 [u) Pr (u) 

oc arg max Pr(bs (p)I u) Pr(I, [u) Pr(u) (5) 

= arg max [In Pr(u) + In Pr(I8 [u) + In Pr(bs (p)[u)](6) 

where (5) is true if we ignore the dependence of bs(p) on /8 because b~(p) is 
obtained as a prior here and is not modified in this formulation. In the last 
equation, we have just taken the natural logarithm, which is a monotonically 
increasing function. 

It is straightforward to directly connect the Bayesian posterior to the PDE 
in Eq.(2) [5]. This view is based on a variational principle from which the PDE 
can be derived. Such principles are well known in mechanics [12] and link the 
PDE formulation as the minimizer of some potential. The PDE for the linear 
elastic model, which is given in Eq.(2), is produced by setting the variation of 
the generalized Lagrangian energy density associated with constraints imposed 
by the linearized mechanics equal to zero [5]. The forcing function in the PDE 
(Eq. (2)) is then the variation of the likelihood function with respect to the 
vector displacement field [1] [10]. 

The first term in Eq.(6) corresponds to the transformation prior term, which 
is defined to give a high probability to transformations consistent with the elastic 
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model and low probability to all other transformations. As mentioned above, it 
is a PDE of the deformation field, u,  and is given by Eq.(2). 

The second term in Eq.(6) is actually the likelihood term which depends on 
the study image. Let I,~(w) be the intensity image of the atlas. We model the 
study image as a Gaussian process with mean given by the deformed atlas image, 
Ia (w  - u ( w ) )  [5] (since Eulerian reference frame is used here, a mass particle 
instantaneously located at w originated from point w - u ( w ) ) .  That  is, 

lnPr(Is[u)  - 2a 2 [Is(w) - Ia(w - u(w))] 2 dw (7) 

where (rl is the standard deviation of the Gaussian process. 
The first body force, F1, is the gradient of this likelihood term with respect 

to u at each w [5] and is given by: 

1 
E l ( u )  = -a----~l [/ ,(w) - I~(w - u(w))] V I a ( w  - u ( w ) )  (8) 

This force is a combination of/8 (w) - I a  ( w - u ( w ) ) ,  the difference in intensity 
between the study and the deformed atlas, and VI,~(w - u (w) ,  the gradient of 
the deformed atlas. The gradient term determines the directions of the local 
deformation forces applied to the atlas. As explained in the introduction, this 
kind of forcing by itself is often under-constrained. 

The main contribution of this paper lies in the last term of Eq.(6), which 
incorporates statistical shape information into the non-rigid registration frame- 
work. The extra constraint of corresponding boundary points is used as an ad- 
ditional matching criterion. The boundary point positions are the result of the 
deformation of the model to fit the data in ways consistent with the statisti- 
cal shape models derived from the training set, as described in Section 3. Let 
ba(n) = (xa(n) ,ya(n)) ,  for n = 1, 2 , . . . , N ,  denote the atlas boundary points 
positions, which are known since we have full information about the atlas. We 
now model b~ (p) as a Gaussian process with mean given by the deformed atlas 
boundary position, expressed as ba(n) + u(w),  for pixels w on the deformed 
atlas boundary points. Then, 

1 N 
lnPr(bs(p)[u) -- 2a 2 ~ [lbs(p,n) - [ba(n) + u(w)] I[ 2 (9) 

n = l  

where a2 is again the standard deviation of the Gaussian process. 
The second body force, F2, is then the gradient of Eq.(9) with respect to u 

for pixels w on the deformed atlas boundary points: 

F 2 ( u )  = --~21[bs(p, n ) - [ b a ( n )  + u(w)] [[ (10) 

F2 (u) is zero for pixels w not on the deformed atlas boundary points. 
From Eq.(10), we can see that  the calculated displacements at the sparse 

boundary points are constrained to match the vector difference of the corre- 
sponding atlas and study boundary point positions. This kind of forcing con- 
tains information from the statistical shape model. The result will match shape 
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Fig. 3. Synthetic images (100 x 100) and displacement vectors. (a): atlas image with its 
control points; (b): study image with its control points; (c): true displacement vectors 
by Eq.(12); (d): our deformed atlas image; (e): errors in our estimated vectors on study 
image; (f): deformed atlas image by Christensen&Miller's elastic method; (g): errors in 
estimated vectors for (f) on study image. 
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Fig. 4. Sensitivity to noise experiment for synthetic images. Eom: maximum displace- 
ment error over the deformed objects; Eo,~: average displacement error over the de- 
formed objects; Eba: average displacement error on the sparse boundary points. Note: 
E1 and E2 are error measures by our method and Christensen&Miller's elastic method 
respectively; the percentages shown are the percentages of the average errors (Eoa, Eba) 
relative to the true average displacements; the intensity range in the atlas and study 
images in Fig.3 is 50 to 250. 

features of the atlas and the study, such as high curvature points and important 
anatomical  landmarks, in addition to the intensity measure. 

The total force term, F(u), in Eq.(2) is then the weighted sum of Fz(u) in 
Eq.(8) and F 2 ( u )  in nq.(10),  that is, for each w,  

F(U)  = ClFi  (u) -~- c2.~ 2 (~t,) (11) 

The two coefficients, Cl and c2, can be related to the image contrast and the 
deformation between the atlas and study image. If c2 is too  large, F2 (u) will 
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play a dominant role by matching only boundary points, which may cause dis- 
continuity when the boundary points are not dense enough. On the other hand, 
if cl is too large, F2 (u) will have almost no effect and the algorithm is then an 
elastic regularization method (as [10]) without statistical information. For the 
time being, they are fixed empirically so that  F l (U)  and F2 (u) are of the same 
order and then have the best effect. 

Fig. 5. MR sagittal corpus callosum images (100 x 64) and synthetic displacement vec- 
tors. (a): atlas image with control points; (b): study image with control points; (c): true 
displacement vectors; (d): our deformed atlas image; (e): errors in our estimated vec- 
tors on study image; (f): deformed atlas image by Christensen&Miller's elastic method; 
(g): errors in estimated vectors for (f) on study image. 

We have presented an elastic model based non-rigid registration procedure 
that  incorporates information obtained from statistical shape model based bound- 
ary finding. Our non-rigid registration method is then composed of Eq.(2) and 
Eq . ( l l ) .  In order to solve the problem, we discretize the two equations and solve 
the resulting system iteratively by using successive over-relaxation (SOR). The 
value of the total body force is used as the stopping criterion for the iterations. 

5 Exper imenta l  Resul ts  

For all of the experiments, we apply Christensen&Miller's elastic registration [10] 
[4] for a direct comparison based on our own implementation. We discretize and 
solve the resulting system iteratively by using SOR instead of stochastic gradient 
search, as in [10]. As to the computation time, while our method requires an extra 
force F2 calculation at sparse boundary points, this leads to faster and accurate 
convergence. Also, since the boundary finding step takes negligible time, i.e. 
only several seconds, the total convergence time of our method is usually a little 
faster. 

5.1 E v a l u a t i o n  C r i t e r i o n  

To evaluate the methodology, we quantify errors in the displacement field over 
the objects of interest, since warping of the background is irrelevant. 
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Fig. 6. MR axial brain images (80 • 100) and displacement vectors. (a): 12 examples 
of brain shapes from a training set with each example a 93 point model of basal ganglia 
and ventricle boundaries; (b): atlas image with its control points; (c): study image with 
its control points derived from our boundary finding algorithm [16]; (d): our estimated 
vectors over our deformed atlas; (e): estimated vectors by Christensen~zMiller's elastic 
method over their deformed atlas; (f): enlargement of (d) showing correct mapping 
of the ventricle corners; (g): mis-matching due to Christensen&Miller's method; (h): 
well deformed putamen by our method (cropped); (i): poorly deformed putamen by 
Christensen&Miller's method. 

II Image (Fig.) [ Error [ Our method [Christensen&Miller's method[[ 
MR sagittal Eoa (%)0.48 pixels (11:5%) 1.26 pixels (30.0%) 

corpus caUosum Eom 1.33 pixels 3.56 pixels 
(Fig.5) Eb~ (%) 0.45 pixels (10:3%) 1.51 pixels (34.7%) 

IIMR axial brain (Fig.6)[ Eba (%)10.75 pixels (16.0%)1 2.04 pixels (43.7%) [I 
[I MR heart (Fig.7) I Eb~(%) [0.90 pixels (15.4%)[ 1.81 pixels (3].1%) tl 

Table 1. Error measure for MR corpus callosum images with known Warping, real 
axial brain and heart images. Eoa: average displacement error over corpus callosum; 
Eom: maximum displacement error over corpus callosum; Eba: average displacement 
error on sparse boundary points. Note: the percentages shown with each average error 
are with respect to the true average displacement. 

Given a known warp, we can measure detailed displacement errors through- 
out the object. For testing purposes, we can define a particular warp and apply 
it to an image generating a warped study image to which the algorithm can be 
applied. We use the following sinusoidal displacement field for transforming the 
atlas image to a study image (see Fig.3(c) or Fig.5(c)): 

xnew = XoZd + A~sin(TrXozd/32); Y~e~, = Yold + Aysin(~rYoZd/32) (12) 
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Fig. 7. MR heart images (150 x 150) and displacement vectors. (a): atlas image; (b): 
atlas image with its control points on the endocardium (cropped); (c): study image; 
(d): study image with control points derived from our boundary finding algorithm; 
(e): our estimated vectors over our deformed atlas image; (f): estimated vectors by 
Christensen&Miller's elastic method over their deformed atlas image. 

where Xotd and Yold are coordinates of a point in the atlas image and xnew and 
ynew are coordinates of the corresponding point in the transformed study image. 
Ax and Ay are the limits of the maximum displacement distances along the x 
and y directions. 

For a known non-rigid warp, the average (Eo,~) and maximum (Eom) differ- 
ences between the estimated and actual displacement vectors over the objects 
are used to measure accuracy. We also use the average difference between the es- 
t imated and actual displacement vectors on the sparse boundary control points, 
Ebb. Since the control points are also derived from the known warp, all three 
measures only reflect the non-rigid registration, and do not include the bound- 
ary finding step. For true image pairs, we only use Eb,~ as an accuracy measure 
because we do not know the true warp, except at sparse boundary points deter- 
mined by an expert. Since the study image boundary control points are derived 
by our statistical shape model based boundary finding, the error, Eba, for t rue 
image pairs includes both the boundary finding step and the non-rigid registra- 
tion step. 

5.2 Synthet ic  Images  wi th  K n o w n  Warping 

The synthetic study image, Figure 3(b), is obtained by resampling the syn- 
thetic atlas image, Fig.3(a), based on the predetermined displacement vectors 
(Eq.(12)). The study control points are also derived from the same predeter- 
mined displacement vectors. The atlas image is then registered to the synthetic 
study image using our image registration procedure. Although the resulting de- 
formed atlases for our method and Christensen&Miller's method are similar, the 
estimated displacement vectors are not. From the errors in the estimated vectors 
(differences between the estimated and true displacement vectors), we can see 
that  our method has almost zero error over the objects, while there is significant 
error in their approach. 

The following experiment, shown in Fig.4, demonstrates the effect of noise 
on the two methods, by adding varying amounts of zero mean Gaussian noise to 
the synthetic images shown in Fig.3(a) and Fig.3(b). The error measures defined 
above are computed for our method (Eloa, Elom, Elba) and Christensen&:Miller's 
elastic approach (E2oa, E2om, E2ba). 
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5.3 Real Image with Known Warping 

In this experiment (Fig.5), we apply a known warping (Eq.(12)) to a magnetic 
resonance (MR) sagittal brain image showing the corpus callosum. While the 
deformed atlases appear similar, the results (Fig.5 and Table 1) show that 
our method leads to a much better registration in the object of interest than 
Christensen&Miller's elastic method. 

5.4 Real Atlas and Study Images 

Results of the method applied to MR brain (axial) and heart image pairs are 
shown in Fig.6 and Fig.7. These are 2D slices roughly corresponding from differ- 
ent brains and hearts for demonstration purposes. The control points of the study 
image are derived from statistical shape model based boundary finding algorithm 
[16]. The shape model used for the brain examples incorporates multiple objects 
and thus also models the distance between the objects. From the error mea- 
sures shown in Table 1, we see that even with the error in the boundary finding 
step, the final error of our method is still much better than Christensen&Miller's 
elastic method. Note particular in Fig.6, the corner of the third ventricle in the 
study was not registered to the atlas correctly by Christensen&Miller's method 
(Fig.6(g)). The structures of the study are shifted away from the corresponding 
ones in the atlas based on gray level information. Our method calculated the 
correct mapping (Fig.6(f)) by incorporating statistical shape information and 
using the corresponding boundary points as an extra constraint. Also note that 
the putamen did not deform well in Christensen&Miller's method (Fig.6(i)) be- 
cause the contrast of the putamen is too low compared to the contrast of the 
ventricles. In our approach, the putamen deformed correctly (Fig.6(h)) since 
shape information of the putamen was included. 

6 C o n c l u s i o n s  

This work presents a systematic approach for non-rigid registration. Transfor- 
mations are constrained to be consistent with physical deformations of elastic 
solids in order to maintain the topology, or integrity, of the anatomic struc- 
tures while having high spatial dimension to accommodate complex anatomical 
details. Both intensity information and statistical shape information are used 
as matching criteria in a Bayesian formulation. The incorporation of statistical 
shape information into the framework is the main contribution of our work. From 
the experimental results, statistical boundary shape information has been shown 
to augment and improve an elastic model formulation for non-rigid registration. 

Our current and future directions include exploring the use of fluid models 
to track long-distance, nonlinear deformations [17] and generalization to 3D. 
Although finding the landmark surface points and model construction in 3D will 
require new strategies, generalizing the purely elastic model deformation to 3D 
is straightforward and has been developed by Christensen et al. [4]. Of course, 
the computational cost increases with the number of voxels. 
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