Skip to main content

Studying parallel evolutionary algorithms: The cellular programming case

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature — PPSN V (PPSN 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1498))

Included in the following conference series:

  • 159 Accesses

Abstract

Parallel evolutionary algorithms, studied to some extent over the past few years, have proven empirically worthwhile—though there seems to be lacking a better understanding of their workings. In this paper we concentrate on cellular (fine-grained) models, presenting a number of statistical measures, both at the genotypic and phenotypic levels. We demonstrate the application and utility of these measures on a specific example, that of the cellular programming evolutionary algorithm, when used to evolve solutions to a hard problem in the cellular-automata domain, known as synchronization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Andre and J. R. Koza. Parallel genetic programming: A scalable implementation using the transputer network architecture. In P. Angeline and K. Kinnear, editors, Advances in Genetic Programming 2, Cambridge, MA, 1996. The MIT Press.

    Google Scholar 

  2. E. CantÚ-Paz and D. E. Goldberg. Modeling idealized bounding cases of parallel genetic algorithms. In J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo, editors, Genetic Programming 1997: Proceedings of the Second Annual Conference, pages 353–361, San Francisco, 1997. Morgan Kaufmann Publishers.

    Google Scholar 

  3. M. Capcarrère, A. Tettamanzi, M. Tomassini, and M. Sipper. A statistical study of a class of cellular evolutionary algorithms. Submitted, 1998.

    Google Scholar 

  4. J. P. Cohoon, S. U. Hedge, W. N. Martin, and D. Richards. Punctuated equilibria: A parallel genetic algorithm. In J. J. Grefenstette, editor, Proceedings of the Second International Conference on Genetic Algorithms, page 148. Lawrence Erlbaum Associates, 1987.

    Google Scholar 

  5. R. Das, J. P. Crutchfield, M. Mitchell, and J. E. Hanson. Evolving globally synchronized cellular automata. In L. J. Eshelman, editor, Proceedings of the Sixth International Conference on Genetic Algorithms, pages 336–343, San Francisco, CA, 1995. Morgan Kaufmann.

    Google Scholar 

  6. W. Hordijk. The structure of the synchonizing-ca landscape. Technical Report 96-10-078, Santa Fe Institute, Santa Fe, NM (USA), 1996.

    Google Scholar 

  7. A. Loraschi, A. Tettamanzi, M. Tomassini, and P. Verda. Distributed genetic algorithms with an application to portfolio selection problems. In Proceedings of the International Conference on Artificial Neural Networks and Genetic Algorithms, pages 384–387. Springer-Verlag, New-York, 1995.

    Google Scholar 

  8. B. Manderick and P. Spiessens. Fine-grained parallel genetic algorithms. In J. D. Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms, page 428. Morgan Kaufmann, 1989.

    Google Scholar 

  9. H. Mühlenbein. Evolution in time and space-the parallel genetic algorithm. In Gregory J. E. Rawlins, editor, Foundations Of Genetic Algorithms I. Morgann Kaufmann Publishers, 1991.

    Google Scholar 

  10. M. Oussaidene, B. Chopard, O. Pictet, and M. Tomassini. Parallel genetic programming and its application to trading model induction. Parallel Computing, 23:1183–1198, 1997.

    Article  MATH  Google Scholar 

  11. G. Rudolph and J. Sprave. A cellular genetic algorithm with self-adjusting acceptance threshold. In First IEE/IEEE International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, pages 365–372, London, 1995. IEE.

    Google Scholar 

  12. M. Sipper. Evolution of Parallel Cellular Machines: The Cellular Programming Approach. Springer-Verlag, Heidelberg, 1997.

    Google Scholar 

  13. M. Sipper. The evolution of parallel cellular machines: Toward evolware. BioSystems, 42:29–43, 1997.

    Article  Google Scholar 

  14. M. Sipper. Computing with cellular automata: Three cases for nonuniformity. Physical Review E, 57(3):3589–3592, March 1998.

    Article  Google Scholar 

  15. T. Starkweather, D. Whitley, and K. Mathias. Optimization using distributed genetic algorithms. In H.-P. Schwefel and R. Männer, editors, Parallel Problem Solving from Nature, volume 496 of Lecture Notes in Computer Science, page 176, Heidelberg, 1991. Springer-Verlag.

    Google Scholar 

  16. A. Tettamanzi and M. Tomassini. Evolutionary algorithms and their applications. In D. Mange and M. Tomassini, editors, Bio-Inspired Computing Machines: Toward Novel Computational Architectures, pages 59–98. Presses Polytechniques et Universitaires Romandes, Lausanne, Switzerland, 1998.

    Google Scholar 

  17. M. Tomassini. The parallel genetic cellular automata: Application to global function optimization. In R. F. Albrecht, C. R. Reeves, and N. C. Steele, editors, Proceedings of the International Conference on Artificial Neural Networks and Genetic Algorithms, pages 385–391. Springer-Verlag, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Agoston E. Eiben Thomas Bäck Marc Schoenauer Hans-Paul Schwefel

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Capcarrère, M., Tettamanzi, A., Tomassini, M., Sipper, M. (1998). Studying parallel evolutionary algorithms: The cellular programming case. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, HP. (eds) Parallel Problem Solving from Nature — PPSN V. PPSN 1998. Lecture Notes in Computer Science, vol 1498. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0056899

Download citation

  • DOI: https://doi.org/10.1007/BFb0056899

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65078-2

  • Online ISBN: 978-3-540-49672-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics