Abstract
Parallel evolutionary algorithms, studied to some extent over the past few years, have proven empirically worthwhile—though there seems to be lacking a better understanding of their workings. In this paper we concentrate on cellular (fine-grained) models, presenting a number of statistical measures, both at the genotypic and phenotypic levels. We demonstrate the application and utility of these measures on a specific example, that of the cellular programming evolutionary algorithm, when used to evolve solutions to a hard problem in the cellular-automata domain, known as synchronization.
Preview
Unable to display preview. Download preview PDF.
References
D. Andre and J. R. Koza. Parallel genetic programming: A scalable implementation using the transputer network architecture. In P. Angeline and K. Kinnear, editors, Advances in Genetic Programming 2, Cambridge, MA, 1996. The MIT Press.
E. CantÚ-Paz and D. E. Goldberg. Modeling idealized bounding cases of parallel genetic algorithms. In J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo, editors, Genetic Programming 1997: Proceedings of the Second Annual Conference, pages 353–361, San Francisco, 1997. Morgan Kaufmann Publishers.
M. Capcarrère, A. Tettamanzi, M. Tomassini, and M. Sipper. A statistical study of a class of cellular evolutionary algorithms. Submitted, 1998.
J. P. Cohoon, S. U. Hedge, W. N. Martin, and D. Richards. Punctuated equilibria: A parallel genetic algorithm. In J. J. Grefenstette, editor, Proceedings of the Second International Conference on Genetic Algorithms, page 148. Lawrence Erlbaum Associates, 1987.
R. Das, J. P. Crutchfield, M. Mitchell, and J. E. Hanson. Evolving globally synchronized cellular automata. In L. J. Eshelman, editor, Proceedings of the Sixth International Conference on Genetic Algorithms, pages 336–343, San Francisco, CA, 1995. Morgan Kaufmann.
W. Hordijk. The structure of the synchonizing-ca landscape. Technical Report 96-10-078, Santa Fe Institute, Santa Fe, NM (USA), 1996.
A. Loraschi, A. Tettamanzi, M. Tomassini, and P. Verda. Distributed genetic algorithms with an application to portfolio selection problems. In Proceedings of the International Conference on Artificial Neural Networks and Genetic Algorithms, pages 384–387. Springer-Verlag, New-York, 1995.
B. Manderick and P. Spiessens. Fine-grained parallel genetic algorithms. In J. D. Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms, page 428. Morgan Kaufmann, 1989.
H. Mühlenbein. Evolution in time and space-the parallel genetic algorithm. In Gregory J. E. Rawlins, editor, Foundations Of Genetic Algorithms I. Morgann Kaufmann Publishers, 1991.
M. Oussaidene, B. Chopard, O. Pictet, and M. Tomassini. Parallel genetic programming and its application to trading model induction. Parallel Computing, 23:1183–1198, 1997.
G. Rudolph and J. Sprave. A cellular genetic algorithm with self-adjusting acceptance threshold. In First IEE/IEEE International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, pages 365–372, London, 1995. IEE.
M. Sipper. Evolution of Parallel Cellular Machines: The Cellular Programming Approach. Springer-Verlag, Heidelberg, 1997.
M. Sipper. The evolution of parallel cellular machines: Toward evolware. BioSystems, 42:29–43, 1997.
M. Sipper. Computing with cellular automata: Three cases for nonuniformity. Physical Review E, 57(3):3589–3592, March 1998.
T. Starkweather, D. Whitley, and K. Mathias. Optimization using distributed genetic algorithms. In H.-P. Schwefel and R. Männer, editors, Parallel Problem Solving from Nature, volume 496 of Lecture Notes in Computer Science, page 176, Heidelberg, 1991. Springer-Verlag.
A. Tettamanzi and M. Tomassini. Evolutionary algorithms and their applications. In D. Mange and M. Tomassini, editors, Bio-Inspired Computing Machines: Toward Novel Computational Architectures, pages 59–98. Presses Polytechniques et Universitaires Romandes, Lausanne, Switzerland, 1998.
M. Tomassini. The parallel genetic cellular automata: Application to global function optimization. In R. F. Albrecht, C. R. Reeves, and N. C. Steele, editors, Proceedings of the International Conference on Artificial Neural Networks and Genetic Algorithms, pages 385–391. Springer-Verlag, 1993.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Capcarrère, M., Tettamanzi, A., Tomassini, M., Sipper, M. (1998). Studying parallel evolutionary algorithms: The cellular programming case. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, HP. (eds) Parallel Problem Solving from Nature — PPSN V. PPSN 1998. Lecture Notes in Computer Science, vol 1498. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0056899
Download citation
DOI: https://doi.org/10.1007/BFb0056899
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-65078-2
Online ISBN: 978-3-540-49672-4
eBook Packages: Springer Book Archive