Abstract
We introduce a multi-model parameter estimation method for nonlinear dynamic systems. The method employs a genetic search with a recursive probability selection mechanism for parameter estimation. The method is applied to nonlinear systems with known structure and unknown parameters. A new technique is used to determine the selection probabilities. First, a population of models with random parameter vectors is produced. Second, a probability is recursively assigned to each member of a generation of models. The probabilities reflect the closeness of each model output to the true system output. The probabilities have to satisfy an entropy criterion so as to enable the genetic algorithm to avoid poor solutions. This is a new feature that enhances the performance of the GA on the parameter estimation problem. Finally, the probabilities are used to create a new generation of models by the genetic algorithm. Numerical simulations are given concerning the parameter estimation of a planar robotic manipulator.
Preview
Unable to display preview. Download preview PDF.
References
Atkeson A., Ch. H. An and J. N. Hollerbach, “Estimation of inertial parameters of manipulator links and loads”, Int. J. of Robotics Res., Vol.5, pp.101–119, (1986).
Kim Jong-Hwan, Chae Hong-Kook, Jeon Jeong-Yul and Lee Seon-Woo, “Identification and Control of Systems with Friction Using Accelerated Evolutionary Programming”, IEEE Control Systems, pp 38–47 (August 1996).
Lecourtier, Y. and E. Walter, “Comments on “On parameter and structural identifiability: nonunique observability/recostructibility for identifiable systems, and other ambiguities and new definitions.”, IEEE Trans. on Automatic Control, vol.26, pp. 800–801, (1981).
Ljung L., System Identification: Theory for the User, Englewood Cliffs, NJ, Prentice Hall, (1987).
Peterka V., “Baysian System Identification”, Automatica, vol.17, No 1, pp.41–53, (1981).
Petridis V., Paterakis E. and Kehagias A. “A hybrid Neural Genetic Multi-Model Parameter Estimation Algorithm”, to appear in IEEE Trans. on Neural Networks (1998).
Söderström T. and Stoica P., System Identification, Englewood Cliffs, NJ, Prentice Hall, (1989).
Vajda S. and Rabitz H., “State Isomorphism Approach to Global Identifiability of Nonlinear Systems”, IEEE Trans. on Automatic Control, vol. 34, No 2, pp.220–223, (1989).
Walter E and Pronzato L., “Qualitative and Quantitative Experiment Design for Phenomelogical Models — A Survey”, Automatica, vol.26, No 2, pp.195–213, (1990).
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Paterakis, E., Petridis, V., Kehagias, A. (1998). Genetic algorithm in parameter estimation of nonlinear dynamic systems. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, HP. (eds) Parallel Problem Solving from Nature — PPSN V. PPSN 1998. Lecture Notes in Computer Science, vol 1498. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0056942
Download citation
DOI: https://doi.org/10.1007/BFb0056942
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-65078-2
Online ISBN: 978-3-540-49672-4
eBook Packages: Springer Book Archive