Skip to main content

Genetic algorithm in parameter estimation of nonlinear dynamic systems

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature — PPSN V (PPSN 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1498))

Included in the following conference series:

  • 177 Accesses

Abstract

We introduce a multi-model parameter estimation method for nonlinear dynamic systems. The method employs a genetic search with a recursive probability selection mechanism for parameter estimation. The method is applied to nonlinear systems with known structure and unknown parameters. A new technique is used to determine the selection probabilities. First, a population of models with random parameter vectors is produced. Second, a probability is recursively assigned to each member of a generation of models. The probabilities reflect the closeness of each model output to the true system output. The probabilities have to satisfy an entropy criterion so as to enable the genetic algorithm to avoid poor solutions. This is a new feature that enhances the performance of the GA on the parameter estimation problem. Finally, the probabilities are used to create a new generation of models by the genetic algorithm. Numerical simulations are given concerning the parameter estimation of a planar robotic manipulator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkeson A., Ch. H. An and J. N. Hollerbach, “Estimation of inertial parameters of manipulator links and loads”, Int. J. of Robotics Res., Vol.5, pp.101–119, (1986).

    Google Scholar 

  2. Kim Jong-Hwan, Chae Hong-Kook, Jeon Jeong-Yul and Lee Seon-Woo, “Identification and Control of Systems with Friction Using Accelerated Evolutionary Programming”, IEEE Control Systems, pp 38–47 (August 1996).

    Google Scholar 

  3. Lecourtier, Y. and E. Walter, “Comments on “On parameter and structural identifiability: nonunique observability/recostructibility for identifiable systems, and other ambiguities and new definitions.”, IEEE Trans. on Automatic Control, vol.26, pp. 800–801, (1981).

    Article  Google Scholar 

  4. Ljung L., System Identification: Theory for the User, Englewood Cliffs, NJ, Prentice Hall, (1987).

    Google Scholar 

  5. Peterka V., “Baysian System Identification”, Automatica, vol.17, No 1, pp.41–53, (1981).

    Article  MATH  MathSciNet  Google Scholar 

  6. Petridis V., Paterakis E. and Kehagias A. “A hybrid Neural Genetic Multi-Model Parameter Estimation Algorithm”, to appear in IEEE Trans. on Neural Networks (1998).

    Google Scholar 

  7. Söderström T. and Stoica P., System Identification, Englewood Cliffs, NJ, Prentice Hall, (1989).

    Google Scholar 

  8. Vajda S. and Rabitz H., “State Isomorphism Approach to Global Identifiability of Nonlinear Systems”, IEEE Trans. on Automatic Control, vol. 34, No 2, pp.220–223, (1989).

    Article  MATH  MathSciNet  Google Scholar 

  9. Walter E and Pronzato L., “Qualitative and Quantitative Experiment Design for Phenomelogical Models — A Survey”, Automatica, vol.26, No 2, pp.195–213, (1990).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Agoston E. Eiben Thomas Bäck Marc Schoenauer Hans-Paul Schwefel

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Paterakis, E., Petridis, V., Kehagias, A. (1998). Genetic algorithm in parameter estimation of nonlinear dynamic systems. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, HP. (eds) Parallel Problem Solving from Nature — PPSN V. PPSN 1998. Lecture Notes in Computer Science, vol 1498. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0056942

Download citation

  • DOI: https://doi.org/10.1007/BFb0056942

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65078-2

  • Online ISBN: 978-3-540-49672-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics