Abstract
The ontogenetic development of living beings suggests the design of a new kind of multicellular automaton endowed with novel quasi-biological properties: self-repair and self-replication. In the framework of the Embryonics (embryonic electronics) project, we have developed such an automaton. Its macroscopic architecture is defined by three features: multicellular organization, cellular differentiation, and cellular division. Through a simple example, a stopwatch, we show that the artificial organism possesses the macroscopic properties of self-replication (cloning) and self-repair. In order to cope with the complexity of real problems, the cell will be decomposed into an array of smaller elements, the molecules, themselves defined by three features: multimolecular organization, self-test and self-repair, and finally cellular self-replication, which is the basis of the macroscopic process of cellular division. These microscopic properties are the subject of a companion paper [9].
Preview
Unable to display preview. Download preview PDF.
References
A. C. Aarden, E. Blok, H. Bouma, and R. Schiphorst. Leven op silicium. Technical Report BSC-44N97, Faculteit den elektrotechniek, Universiteit Twente, 1997.
M. A. Arbib. Simple self-reproducing universal automata. Information and Control, 9:177–189, 1966.
M. A. Arbib. Theories of Abstract Automata. Prentice-Hall, Englewood Cliffs, N.J., 1969.
H. Kitano. Designing neural networks using genetic algorithms with graph generation system. Complex Systems, 4:461–476, 1990.
H. Kitano. Morphogenesis for evolvable systems. In E. Sanchez and M. Tomassini, editors, Towards Evolvable Hardware, volume 1062 of Lecture Notes in Computer Science, pages 99–117. Springer-Verlag, Heidelberg, 1996.
C. G. Langton. Self-reproduction in cellular automata. Physica D, 10:135–144, 1984.
D. Mange, D. Madon, A. Stauffer, and G. Tempesti. Von Neumann revisited: A Turing machine with self-repair and self-reproduction properties. Robotics and Autonomous Systems, 22(1):35–58, 1997.
D. Mange and M. Sipper. Von Neumann’s quintessential message: Genotype + ribotype = phenotype. Artificial Life, (to appear).
D. Mange, A. Stauffer, and G. Tempesti. Embryonics: A microscopic view of the molecular architecture. In M. Sipper, D. Mange, and A. Perez, editors, Proceedings of The Second International Conference on Evolvable Systems: From Biology to Hardware (ICES98), Lecture Notes in Computer Science. Springer-Verlag, Heidelberg, 1998.
D. Mange and M. Tomassini, editors. Bio-Inspired Computing Machines. Presses polytechniques et universitaires romandes, Lausanne, 1998.
P. Marchai, C. Piguet, D. Mange, A. Stauffer, and S. Durand. Embryological development on silicon. In R. A. Brooks and P. Maes, editors, Artificial Life IV, pages 365–370, Cambridge, Massachusetts, 1994. The MIT Press.
P. Nussbaum, P. Marchal, and C. Piguet. Functional organisms growing on silicon. In T. Higuchi, M. Iwata, and W. Liu, editors, Proceedings of The First International Conference on Evolvable Systems: From Biology to Hardware (ICES96), volume 1259 of Lecture Notes in Computer Science, pages 139–151. Springer-Verlag, Heidelberg, 1997.
C. Ortega and A. Tyrrell. Design of a basic cell to construct embryonic arrays. In IEE Proceedings on Computers and Digital Techniques. (to appear).
C. Ortega and A. Tyrrell. Biologically inspired reconfigurable hardware for dependable applications. In Proceedings of the Colloquium on Hardware Systems for Dependable Applications. IEEE Professional Group A2, 1997.
C. Ortega and A. Tyrrell. Fault-tolerant systems: The way biology does it. In Proceedings of the 23rd Euromicro Conference. IEEE Computer Society Press, 1997.
J.-Y. Perrier, M. Sipper, and J. Zahnd. Toward a viable, self-reproducing universal computer. Physica D, 97:335–352, 1996.
P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of Plants. Springer-Verlag, New York, 1990.
J. A. Reggia, S. L. Armentrout, H.-H. Chou, and Y. Peng. Simple systems that exhibit self-directed replication. Science, 259:1282–1287, February 1993.
A. Stauffer and M. Sipper. L-hardware: Modeling and implementing cellular development using L-systems. In D. Mange and M. Tomassini, editors, Bio-Inspired Computing Machines. Presses polytechniques et universitaires romandes, Lausanne, 1998.
A. Stauffer and M. Sipper. Modeling cellular development using L-systems. In M. Sipper, D. Mange, and A. Perez, editors, Proceedings of The Second International Conference on Evolvable Systems: From Biology to Hardware (ICES98), Lecture Notes in Computer Science. Springer-Verlag, Heidelberg, 1998.
G. Tempesti. A new self-reproducing cellular automaton capable of construction and computation. In F. MorĂ¡n, A. Moreno, J. J. Merelo, and P. ChacĂ³n, editors, ECAL’95: Third European Conference on Artificial Life, volume 929 of Lecture Notes in Computer Science, pages 555–563, Heidelberg, 1995. Springer-Verlag.
J. von Neumann. Theory of Self-Reproducing Automata. University of Illinois Press, Illinois, 1966. Edited and completed by A. W. Burks.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mange, D., Stauffer, A., Tempesti, G. (1998). Embryonics: A macroscopic view of the cellular architecture. In: Sipper, M., Mange, D., PĂ©rez-Uribe, A. (eds) Evolvable Systems: From Biology to Hardware. ICES 1998. Lecture Notes in Computer Science, vol 1478. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0057619
Download citation
DOI: https://doi.org/10.1007/BFb0057619
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-64954-0
Online ISBN: 978-3-540-49916-9
eBook Packages: Springer Book Archive