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Abstract. In order to answer efficiently range queries in 2-d R-trees,
first we sort queries by means of a space filling curve, then we group
them together, and finally pass them for processing. Initially, we consi-
der grouping of pairs of requests only, and give two algorithms with ex-
ponential and linear complexity. Then, we generalize the linear method,
grouping more than two requests per group. We evaluate these methods
under different LRU buffer sizes, measuring the cache misses per query.
We present experimental results based on real and synthetic data. The
results show that careful query scheduling can improve substantially the
overall performance of multiple range query processing.

1 Introduction

Two basic research directions exist aiming at improving efficiency in a Spatial
DBMS [4J8[13]. The first direction involves the design of robust spatial data
structures and algorithms [2], the second one focuses on the design of clever
query optimizers. Most of the work in the latter area deals with the optimization
of a single (possibly complex) spatial query [I].

Here, we concentrate on range/window queries defined by a rectilinear rec-
tangle, where the answer is composed of all objects overlapping the query rec-
tangle. We examine methods to combine many range queries (posed by one or
many users) in order to reduce the total execution time, based on the reasoning
of [I4]. We quote from the latter work: the main motivation for performing such
an interquery optimization lies in the fact that queries may share common data.

There are real-life cases where many requests can be present simultaneously:

— in complex disjunctive/conjunctive queries which can be decomposed in
simpler subqueries,

— in spatial join processing, where if one relation participates with only a few
objects, then it is more efficient to perform lookups in the second relation,

— in spatial client/server environment, where at any given time instance more
than one users may request for service.
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— in benchmarking/simulation environments, where submitted queries are ge-
nerated with analytical techniques and therefore are known in advance.

For this purpose, we use space filling curves to sort query windows and apply
a simple criterion in order to group queries efficiently. We consider the original
R-tree [A] as the underlying access method. However, the method is applicable to
any R-tree variant or any other spatial access methods with minor modifications.
Although, the discussion is based on 2-d space, the generalization to higher
dimensional spaces is straightforward.

The use of buffers is very important in database systems [3], since the per-
formance improvement can be substantial. One of the policies that is widely
acceptable is the LRU (Least Recently Used) policy, which replaces the page
that has not been referenced for the longest time period. The performance of
the proposed methods using LRU buffers of various sizes is evaluated and results
show that different methods have different performance under different buffer si-
zes. However, it is emphasized that a careful preprocessing of the queries can
improve substantially the overall performance of range query processing.

The rest of the paper is organized as follows. In Sections 2 and 3 we give
the appropriate background on R-trees and space filling curves, and analytic
considerations respectively. In Section 4 we describe the various techniques in
detail. Section 5 contains the experimental results and performance comparisons.
Finally, Section 6 concludes the paper and gives some future research directions.

2 Background

2.1 R-trees

The R-tree [5] is a multi-dimensional, height balanced tree structure for use in
secondary storage. The structure handles objects by means of their Minimum
Bounding Rectangles (MBR). Each node of the tree corresponds to exactly one
disk page. Internal nodes contain entries of the form (R, child-ptr), where R is the
MBR enclosing all the MBRs of its descendants and child-ptr is the pointer to
the specific child node. Leaves contain entries of the form (R,object-ptr), where
R is the MBR of the object and object-ptr is the pointer to the objects detailed
description. One of the most important factors that affects the overall structure
performance is the node split strategy. In [5] three split policies are reported,
namely exponential, quadratic and linear split policies. More sophisticated R-
tree variants have been proposed [2], however here we adopt the original R-tree
structure because we mainly want to emphasize on the technique to reduce the
processing cost.

2.2 Space Filling Curves

A Space Filling Curve is a special fractal curve which has the following basic
characteristics:
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— it covers completely an area, a volume or a hyper-volume in a 2-d, 3-d or
n-d space respectively,

— each point is visited once and only once (the curve does not cross itself), and

— neighbor points in the native space are likely to be neighbors in the space
filling curve.
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Fig. 1. Peano and Hilbert space filling curves.

In Figure [ we present two of most important Space Filling Curves: Peano
and Hilbert. We can easily observe the self-similarity property of the curves. A
Peano curve can be constructed by interleaving the bits of coordinates x and
y. The generation of the Hilbert curve is more complex, i.e. it is constructed
by means of a process that uses rotation and mirroring. Algorithms for the
generation of the 2-d Hilbert curve can be found in [6J§]. The goodness of a
space filling curve is measured with respect to its ability to preserve proximity.
Although there are no analytical results to demonstrate the superiority of the
Hilbert curve, experiments [6] show that it is the best distance preserving curve.
Therefore, in the rest of the paper we focus on the Hilbert curve.

3 Analytical Considerations

In this section, we derive an estimate for the expected number of page references,
when processing a set S of NV window queries ¢1, .., q. The notations used along
with their description are presented in Table 1.

Assume that the query rectangle centroids obey a uniform distribution and
that the dataspace dimensions are normalized to the unit square. The expected
number of page references to satisfy the query g; is [7]:

EPR((]“;, Qiy) =TA + iz - Ey + iy - Ez + TN - iz * iy (]-)

where ¢;; and g;, are the x and y extends of the window query ¢;. Equation
(1) is independent of the R-tree construction method as well as independent of
the data object distribution. Also, the parameters used can be calculated and
maintained with negligible cost.

To simplify the analysis we focus on the R-tree leaf level. However, the ana-
lysis can be applied to all the levels. We also assume that each query window
is a square with side ¢, and each data page has a square MBR with area L,.
Setting gi»=¢iy=q, TN=LN, E,=LN - VL, E,=LN - VL., TA=LN - L,, we
get:

EPR(q) =LN - (¢*+2 /Lo - q+ La)
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Symbol Description

N number of pending range queries

q query window side

Q super window side

TN total number of R-tree nodes

TA sum of areas of all nodes

LN number of R-tree leaves

L, area of the MBR of a leaf

E. sum of x extends of all R-tree nodes

E, sum of y extends of all R-tree nodes

EPR(q) expected number of page references for query ¢
TEPR(S) |total expected number of page references for set S
DPR(S) number of distinct page references for set S
ERPP(q,Q)|expected number of references per page

Table 1. Notations used throughout the analysis.

Since there are N requests, the total number of page references (including the
redundant ones) is:

N
TERP(S) = » EPR(q) = N-LN-(¢*+2-\VLa-q+Ls)  (2)
k=1

We can associate to the N window queries, a super-window SW which cor-
responds to the MBR of all query windows. For simplicity let SW be a square
with side ). We would like to have an estimate for the number of distinct page
references (i.e. excluding redundant references). We can approximate this num-
ber by the number of page references introduced when processing SW. However,
this approximation is not accurate if N is small and ¢ < @. In this case the
number of distinct page references includes a large number of pages referenced
by SW, but not referenced by any ¢;. Ignoring this effect we get:

DPR(S) = DPR(Q) = LN - (@Q*+2- VL, - Q + Ly) (3)

We can use Formulae (2) and (3) to derive the expected number of references
per page:
TEPR(S) _ (q+\/L7>2 (@)
DPR(S) Q+ VL
From Equation (4) we observe that as g approaches ), ERPP(q, Q) approaches
N. Obviously, in the extreme case where ¢=@Q, we get FRPP(q,Q)=N. This
is exactly the case where all N query windows represent the same portion of
the dataspace. Figure 2] depicts ERPP(q,Q) as a function of @ for N=100,
and ¢=0 (point queries), ¢=0.1 (small window queries), ¢=0.3 (large window
queries). The value of /L, was set to 0.01, i.e. the area of the MBR of each leaf
covers 1% of the dataspace area.

The graphs show that a single page may be references many times during
the processing of the N window queries. If a page reference causes a disk access,

ERPP(q,Q) =
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Fig. 2. Plots of ERPP(q,Q) vs. Q for N=100, v/L,=0.01 and ¢=0, 0.1, 0.3.

the number of I/O operations increases substantially. However, with adequate
cache buffers, the total processing cost may be reduced. In the following section
we discuss several techniques to solve the problem.

4 Processing Multiple Requests

In this section we study several alternatives to service a number of window
queries. The processing cost of a window query ¢; is mainly affected by the I/O
time to fetch the appropriate disk pages and the CPU time to process them. For
the rest of the paper we focus on the I/O activity ignoring the CPU time as a
negligible cost.

A common approach to service a number of requests is to process them in a
First-Come-First-Served (FCFS) manner. Clearly, in case of low rate of query
arrivals (e.g. one query per minute), FCFS is a reasonable service strategy.
However, there is a major problem with this approach in other cases (see Section
1). If the order of processing follows the arrival order, then the probability to
have a cache hit is very small, leading to poor cache utilization. However, we
can take advantage of the fact that we have knowledge of all pending requests
and improve the performance.

Our first attempt is to perform a quick preprocessing of all pending query
windows, in order to increase the probability that a page required is residing
into the cache buffer. The first algorithm HS (Hilbert Sorting) has as follows:
Algorithm HS
[HS1] For each g; € S calculate the Hilbert value of the window’s centroid.
[HS2] Sort the Hilbert values in increasing order to obtain a total order of the
query windows, g;1, .-, ¢iN -

[HS3] For all g;;, j=1..N execute query g;;.

The method guarantees (up to a point) that nearby requests will be executed
sequentially, thus enhancing the locality of references. The main observation is
that the method depends heavily on the size of the cache buffer. Moreover, if
there is no buffer space, the algorithm has the same performance with the FCFS
method. This drawback motivates us to go one step further.

Consider two requests ¢; and g;. If these requests share common pages, we
could execute them as one. What we need is a criterion to decide when to group
these queries and when to execute them individually. We can use Equation (1)
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to determine if the grouping of queries ¢; and ¢; is advantageous or not. Let @
denote the MBR of the query windows ¢; and ¢; and Q, @, its x and y extend
respectively. If we execute @ instead of both ¢; and g;, there will be a reduction
in disk accesses if and only if:

EPR(QmQy) S EPR(ininy) + EPR(ijijy) ad
Ey ' (Qz — Qixz — (Ij:z:) + By - (Qy — iy — qjy) +
TN - (Qz : Qy — Giz * Qiy — Gz 'ij) —TA < 0 (5)

In Inequality (5) above we observe that:

— the factors Ey - (Qz — Giz — ¢jz) and E; - (Qy — giy — gjy) are negative if the
two query rectangles overlap in space.

— the value of the factor TN - (Q - Qy — ¢iz - ¢iy — Qjz - Gjy) decreases as the
overlap increases.

However, two queries may share common pages even if they do not intersect.
Consequently, as the distance between the two query rectangles in the native
space decreases, the gain in disk accesses increases. If two range queries satisfy
Inequality (5), this is a clear criterion that with high probability there will be a
reduction in the number of disk accesses.

Based on this simple grouping criterion, let us proceed with the construction
of efficient algorithms where this criterion can be valuable. First we present
an exhaustive method with exponential complexity, and next we give a simple
greedy method along with its extension, with linear complexity. Beforehand, we
emphasize that these algorithms are based on the following assumptions:

1. the window queries have been ordered according to the Hilbert value of their
rectangle centroids (with O(N-logN) cost).
2. grouping is allowed only to neighbor queries (with respect to Hilbert order).

Later we will generalize to more queries and discuss the pros and cons of such
an approach.

4.1 The Exponential Algorithm (Algorithm E)

Consider IV unserviced range query requests. For a query g;, j=1..N there are
three alternatives:

1. the query will be executed individually,
2. the query will be combined with its left sibling,
3. the query will be combined with its right sibling.

Therefore, to determine a promising processing schedule, we could consider all
possible schedules and select the one with the minimum total execution cost.

Proposition. The number of all possible schedules derived for N range queries
under the constraint that each request can be executed either alone or together

N+1
with its left or right sibling is: O ((%) > m|

It is evident that the execution cost of the algorithm is very high, and the-
refore unacceptable for practical use in real applications.
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4.2 The Linear Algorithm (Algorithm L)

We may reduce the algorithmic complexity by using a simple greedy method.
The idea is: given two requests ¢; and ga, just check if Inequality (5) is satisfied
or not. If yes, we will execute the queries as one. If not, we will execute ¢; alone
and proceed with g2 and g3 until we consider all pending requests.
Algorithm L
[L1] For each ¢; € S calculate the Hilbert values of the window’s centroid.
Sort the Hilbert values in increasing order to obtain a total order of the query
windows.
[L2] Let pos denote the current query index. Initialize pos=1.
[L3] while (pos < N) do
begin
Test Inequality (5) for query rectangles gpos and gpos+1;
if Inequality (5) is satisfied
then process the two queries as one and set pos=pos+2
else process query gp,s and set pos=pos+1.
end
if (pos==N) then service gpos.
Clearly, the complexity of the algorithm is O(N-logN), since in step [L1] we
sort the rectangles. Step [L3] takes only O(N), because the queries are scanned
only once.

4.3 The Extended Linear Algorithm (Algorithm ExL)

In this subsection we relax the constraint that at most two queries can be execu-
ted as one. Algorithm ExL derived is an extension of the L algorithm, enabling
the grouping of more than two window queries.

Consider the queries ¢1, .., qn, in increasing order with respect to the Hilbert
value of the rectangle centroid. The algorithm tries to pack requests into disjoint
sets. We begin with request ¢;. Initially the first group G; contains only ¢
(G1={q1}). If the processing of g1 and g2 together retrieves less pages than the
processing of ¢ plus ¢ (according to Inequality (5)), then G1={q1,¢2}. If the
processing of ¢3 and ¢» and ¢ together retrieves less pages than the processing
of g3 plus g2 plus q1, then G1={q1, g2, ¢3}. We continue the same process, until
we reach a request g such that EPR(G1 + qr) > EPR(G1) + EPR(qx). When
this happens we set G1={q1, .., qx—1} and Go={qx}. Therefore, a second group
G is considered. This process is continued until all requests are examined.
Algorithm ExL
[ExL1] For each ¢; € S calculate the Hilbert values of the window’s centroid.
Sort the Hilbert values in increasing order to obtain a total order of the query
windows.

[ExL2] Let pos denote the current query index. Initialize pos=1.
Let Groupld denote the current group. Initialize Groupld=1.
[ExL3] while (pos < N) do

begin
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Initialize EndO fGroup=FALSE and Ggroupra={qpos };
while (!EndO fGroup) do
begin
if (EPR(GGroupId + q;;os) < EPR(GGroupId) + EPR(qpos))
then assign ¢pos to Ggroupra and set pos=pos+1;
else set EndO fGroup=TRUE and set Groupld=Groupld+1;
process as one all g;’s € Ggrouprd;
end
end
if (pos==N) then service gpos.

Provided that the query windows have been already sorted with respect to
the Hilbert value of their centroid, the time complexity of step [ExL3] is linear
to the number of requests (O(N)).

Finally, another major issue is the separation of the results. After the pro-
cessing of a multiple range query, we must determine which objects correspond
to specific range queries. This operation is CPU-bound and can be performed
using computational geometry [I2] techniques in order to find the queries that
a specific object geometry satisfies.

5 Experimental Results

5.1 Preliminaries

We implemented the R-tree access method with the quadratic split policy, and
the algorithms HS, L and ExL in the C programming language under UNIX.
The experimentation was performed on DEC 3000 workstation. The page size
was set to 2Kbytes. The dataspace dimensions were set to the unit square [0, 1) x
[0,1) and all datasets were normalized to fall inside the dataspace area. The
buffer sizes (in Kbytes) considered in this paper are: 0, 8, 32, 128, 512 and 1024
(i.e. 1 Mbyte). The different datasets used throughout the evaluation of the
methods are presented in the next table.

Dataset|Representation of | Object |[Population|Source
CP |California places points 65,252  |s2k-ftp.cs.berkeley.edu
CUA |California Urban and
Agricultural |rectangles 12,361 s2k-ftp.cs.berkeley.edu
MG |Montgomery County |rectangles| 39,323  |http://www.census.gov
LB |Long Beach County |rectangles| 53,146 |http://www.census.gov
Table 2. Datasets used for experimentation.

The major factors that affect the performance of the algorithms are:

— the number of pending window queries,
— the size of the LRU bulffer,
— the characteristics of the query windows (i.e. area, perimeter) and
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the characteristics of the dataset (i.e. distribution, coverage, geometry).

Let us investigate the impact of these factors. Figure B] presents the results for
the MG+LB dataset and Figure [ the results for the CP dataset. Each one of
these figures comprises of two parts:

1.

The left part ((a) to (c)) presents the cache misses per query when the
varying quantities are the LRU buffer size and the number of pending range
queries, whereas the query window side is fixed at 0.05.

The right part ((d) to (f)) presents the cache misses per query when the
varying quantities are the LRU buffer size and the query window side. The
number of pending range queries is fixed at 100.

5.2 Interpretation of Results

From Figures Bl and Bl some very interesting observations can be derived. It is
easily understood that:

as the buffer size increases the performance of all methods is improved,

the more the pending range queries, the more efficient is the derived proces-
sing plan,

as the side of the query window increases, the performance improvement is
more significant,

when the R-tree stores points (CP dataset), the R-tree nodes have (gene-
rally) less area and perimeter (in comparison to other datasets) and thus
the probability that a page will be referenced by more than one queries
decreases. Therefore, the performance improvement of the proposed method
in comparison to FCF'S is less significant (but still present).

By inspecting closer Figures Bl and ] we derive that:

The HS algorithm, for 0Kbyte buffer has identical performance with the
FCFS method, since the locality of references is not utilized at all. For LRU
buffer sizes ranging between 8Kbytes and 32Kbytes, the performance impro-
vement of HS, is around 5% over the FCFS method (in some cases reaches
20% for 32Kbytes buffer). However, for large buffer sizes (128Kbytes and
above) HS is the best choice. In such cases the improvement over the FCFS
method ranges from 20% to 60%. As stated in a previous, the performance
of this algorithm is highly related to the LRU buffer size. The only thing
that this algorithm can guarantee, is the locality of references. However, it
is not certain that all IV requests will be processed without other requests
interfering.

Algorithm ExL is the best choice, when no LRU buffer is available. We
observe that in cases where the queries cover a large portion of the dataspace
(Figures Bf and @) ExL can achieve up to 80% improvement over FCFS.
As the buffer size increases, HS and L are clearly better than ExL. This
is due to the fact that grouping more than two queries can lead to a large
number of unnecessary page accesses.
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Fig. 3. MG+LB dataset. Left Part: Cache misses per query versus LRU buffer size and
number of pending queries (for ¢=0.05). Right Part: Cache misses per query versus LRU
buffer size and query window side (for N=100).

— Algorithm L keeps the balance between algorithms HS and ExL. For no (or
small) LRU buffers, its performance is very close to that of ExL, whereas for
large LRU buffers, its performance is very close to that of HS. In general, L
achieves a 30% performance improvement over FCFS.

— When the LRU buffer size is large (e.g. > 1Mbyte), and the number of
pending queries is small (e.g. 20), the performance of FCFS method is very
close to that of algorithm L and slightly better than that of algorithm bf
ExL. The reason for this is the number of extra pages fetched by L and ExL.

6 Conclusions

We proposed a global query optimization technique to improve the performance
of a Spatial DBMS when answering multiple range queries. The main result is
that a careful preprocessing of the queries can lead to substantial reduction of
the number of disk accesses and better cache utilization, in comparison to the
FCFS method. This goal has been achieved by satisfying two main needs:
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Fig. 4. CP dataset. Left Part: Cache misses per query versus LRU buffer size and
number of pending queries (for ¢=0.05). Right Part: Cache misses per query versus
LRU buffer size and query window side. (for N=100).

1. bring “similar” query rectangles close to each other, and
2. provide special algorithms to aid the reduction of disk accesses.

To satisfy need 1, we have used the Hilbert space filling curve, and Algorithm
HS is based only on this sorting according to Hilbert values. To satisfy need 2,
we provide three algorithms (E, L and ExL) to combine neighbor (according
to Hilbert order) query rectangles. Algorithms L and ExL are linear and exhi-
bit considerable gain when compared to the conventional FCFS approach. We
tested our method under different data sets and different LRU buffer sizes. We
suggest using algorithm HS for large buffers and algorithm L in all other cases.
Although algorithm ExL introduces a substantial improvement in some cases,
if the requests represent queries of different users, may impose a large waiting
time, as opposed to algorithm L which does not introduce much overhead.

Future research may include:

— Application of the method to other R-tree variants and other spatial data
structures, modifying accordingly the formula deriving the expected number
of disk accesses for a range query (Equation (1)),
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— Evaluation of the method when the query distribution follows the object

distribution, i.e. each object has the same probability to be retrieved [11],

— Global optimization by considering other more complex spatial queries (e.g.

spatial join).
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