Skip to main content

Clustering techniques for minimizing object access time

  • Regular Papers
  • Conference paper
  • First Online:
Advances in Databases and Information Systems (ADBIS 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1475))

Abstract

We propose three designs for clustering objects: a new graph partitioning algorithm, Boruvka’s algorithm, and a randomized algorithm for object graph clustering. Several points are innovative in our approach to clustering: (1) the randomized algorithm represents a new approach to the problem of clustering and is based on probabilistic combinatorics. (2) All of our algorithms can be used to cluster objects with multiple connectivity. (3) Currently applied partition-based clustering algorithms are based on Kruskal’s algorithm which always runs significantly slower than Prim’s and also uses considerably more storage. However in our implementation of clustering algorithms we achieved additional reduction in processing time of object graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. E. Chang, R. H. Katz, “Exploiting Inheritance and Structure Semantics for Effective Clustering and Buffering in an Object-oriented database system”, in Proceedings of the ACM SIGMOD Conference, 1989.

    Google Scholar 

  2. Manolis M. Tsangaris and Jeffrey F. Naughton. Amnesia: a stochastic access model for object stores. Unpublished Manuscript, University of Wisconsin-Madison, August 1990.

    Google Scholar 

  3. D. DeWitt, S. Ghandeharizadeh, S. Schneider, D. Bricker, H. Hsiao, H. Rasmussen, “The Gamma Database Machine Project”, IEEE Transactions on Knowledge and Data Engineering, 2(1), March, 1990.

    Google Scholar 

  4. M. M. Tsangaris, J. F. Naughton, “A Stochastic Approach for Clustering in Object Bases”, ACM SIGMOD Conference, Denver, Colorado, 1991, pp. 12–21.

    Google Scholar 

  5. J. R. Cheng, A. R. Hurson, “Effective Clustering of Complex Objects in Object-Oriented Databases”, ACM SIGMOD Conference, Denver, Colorado, 1991, pp. 22–31.

    Google Scholar 

  6. V. Benzaken, “An Evaluation Model for Clustering Strategies in the O2 Object-Oriented Database System”, Int. Conf. on Database Theory (ICDT), pp. 126–140. Springer-Verlag, 1990.

    Google Scholar 

  7. J. Banerjee, W. Kim, and J. F. Garza, “Clustering a DAG for CAD Databases”, IEEE Transactions on Software Engineering 14(11) p. 1684, November 1988.

    Article  MATH  MathSciNet  Google Scholar 

  8. V. Benzaken, C. Delobel, “Dynamic Clustering Strategies in the O2 Object-Oriented Database System”, Technical Report 34-89, Altair, 1989.

    Google Scholar 

  9. E. E. Chang, R. H. Katz, “Exploiting Inheritance and Structure Semantics for Effective Clustering and Buffering in an Object-oriented database system”, in Proceedings of the ACM SIGMOD Conference, 1989.

    Google Scholar 

  10. P. Drew, R. King, S. Hudson, “The Performance and Utility of the Cactis Implementation Algorithms”, Sixteenth VLDB Conference, 1990.

    Google Scholar 

  11. K. Kemper, C. Gerlhof, “Clustering in Object Bases”, University of Karlsruhe, Technical Report 6/92, June, 1992.

    Google Scholar 

  12. G. Moerkotte, C. Kilger, “Clustering in Object Bases”, University of Karlsruhe, Technical Report, June, 1992.

    Google Scholar 

  13. J. Stamos, “Static Grouping of Small Objects to Enhance Performance of a Paged Virtual Memory”, ACM Trans. Comp. Syst., 2(2): 155–180, May 1984.

    Article  Google Scholar 

  14. M. Carey, D. DeWitt, J. Richardson, and E. Shekita, “Object and File Management in the EXODUS Extensible Database System”, Conf. on VLDB, p. 91–100, Japan, Aug 86.

    Google Scholar 

  15. Hudson, R. King, “Cactis: A self-adaptive, concurrent implementation of an Object-Oriented Database Management System”, ACM Trans. On Database Systema, 14(3): 291–321, Sep 1989.

    Article  Google Scholar 

  16. VERSANT System Manual, VERSANT Release 5.0, February 1997

    Google Scholar 

  17. Wietrzyk, M. A. Orgun, “VERSANT Architecture: Supporting High-Performance Object Databases”, International Database Engineering & Applications Symposium, IDEAS98, Cardiff, U.K., July 1998, (accepted to appear).

    Google Scholar 

  18. Melnikow, R. Tyshkevich, V. Yemelichev, V. Sarvanov, “Lectures on Graph Theory”, Moscow, “Science”, 1990.

    Google Scholar 

  19. Tyshkevich, N. Korneenko and V. Zemljachenko, “Graph Isomorphism Problems”, J. of Math, Moscow, “Science”, 1990.

    Google Scholar 

  20. Kemper, G. Moerkotte, “Physical Object Management” in Modern Database Systems, ACM Press, New York, 1995, Won Kim, Editor.

    Google Scholar 

  21. R. Karger, “Approximating, verifying, and constructing minimum spanning forests”, Manuscript, 1992.

    Google Scholar 

  22. R. Karger, “Random sampling in matroids, with applications to graph connectivity and minimum spanning trees”, In Proceedings of the 34 th Annual IEEE Symposium on Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos, Calif., p. 84–93, 1993.

    Google Scholar 

  23. N. Klein, R. E. Tarjan, “A randomized linear-time algorithm for finding minimum spanning trees”, In Proceedings of the 26 th Annual ACM Symposium on Theory of Computing. (Montreal, Que., Canada, May 23–25). ACM, New York, p. 9–15, 1994.

    Google Scholar 

  24. N. Alon, J. Spencer, “The Probabilistic Method”, Wiley, New York, 1992.

    Google Scholar 

  25. Komlos, “Linear verification for spanning trees”, Combinatorica 5 p. 57–65, 1985.

    MATH  MathSciNet  Google Scholar 

  26. Chernoff, “A measure of the asymptotic efficiency for tests of a hypothesis based on the sum of observations”, Ann. Math. Stat. 23, p. 493–509, 1952.

    MATH  MathSciNet  Google Scholar 

  27. W. Kernighan, S. Lin, “An efficient Heuristic Procedure for Partitioning Graphs”, Bell System Technical Journal, 49(2), pages 291–307, February 1970.

    MATH  Google Scholar 

  28. Erdos and A. Renyi, “On the Evolution of Random Graphs”, Magyar Tud. Akad. Mat. Kut. Int. Kozl 5, 1960.

    Google Scholar 

  29. L. Anderson, A.J. Berre, M. Mallison et al, “The Hypermodel Benchmark” in Bancilhon, Thanos, Tsichritzis (Eds.): Advances in Database Technology — EDBT’90, LNCS 416, 1990.

    Google Scholar 

  30. Bing, R. Cheng, A. R. Hurson, “Effective Clustering of Complex Objects in OO Databases”, in Proc. ACM SIGMOD Conf., Denver, CO. May 1991.

    Google Scholar 

  31. Moerkotte, C. Gerlhof, A. Kemper “On the Cost of Monitoring and Reorganization of Object Bases for Clustering”, SIGMOD Record, September 1996.

    Google Scholar 

  32. M. Carey, D. DeWitt, “ Storage Management for Objects in EXODUS”, in W. Kim and F. H. Lochovsky, eds., Object-Oriented Concepts, Databases and Applications, Addison-Wesley, 1989.

    Google Scholar 

  33. T. Chou, D. Dewitt, R. Katz, A. Klug, “Design and Implementation of the Wisconsin Storage System”, in Software-Practice and Experience, October 1985.

    Google Scholar 

  34. T. Keller, G. Graefe, D. Maier, “Efficient Assembly of Complex Objects”, ACM SIGMOD Conference, Denver, Colorado, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Witold Litwin Tadeusz Morzy Gottfried Vossen

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wietrzyk, V.S.I., Orgun, M.A. (1998). Clustering techniques for minimizing object access time. In: Litwin, W., Morzy, T., Vossen, G. (eds) Advances in Databases and Information Systems. ADBIS 1998. Lecture Notes in Computer Science, vol 1475. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0057736

Download citation

  • DOI: https://doi.org/10.1007/BFb0057736

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64924-3

  • Online ISBN: 978-3-540-68309-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics