
Exploiting Spatial and Temporal Locality of
Accesses: A New Hardware-Based Monitoring

Approach for DSM Systems

Robert Hockauf, Wolfgang Karl, Markus Leberecht, Michael Oberhuber, and
Michael Wagner

Lehrstuhl fr Rechnertechnik und Rechnerorganisation (LRR-TUM)
Institut fr Informatik der Technischen Universitt Mnchen

Arcisstr. 21, D-80290 Mnchen, Germany
{karlw, leberech, oberhube}~informatik.tu-muenchen.de

Abs t r ac t . The performance of a parallel system with NUMA character-
istics depends on the efficient use of local memory accesses. Programming
and tool environments for such DSM systems should enable and exploit
data locality.
In this paper we present an event-driven hybrid monitoring concept for
the SMILE SCI-based PC cluster. The central part of the hardware mon-
itor consists of a content-addressable counter array managing a small
working set of the most recently referenced memory regions. We show
that this approach allows to provide detailed run-time information which
can be exploited by performance evaluation and debugging tools.

1 Introduct ion

The SMILE 1 project at LRR-TUM investigates high-performance cluster com-
puting based on Scalable Coherent Interface SCI as interconnection technology
[5]. Within this project, an SCI-based PC cluster with distr ibuted shared mem-
ory (DSM) is being built. In order to be able to set up such a PC cluster we
have developed a PCI-SCI adapter targeted to plug into the PCI bus of a PC.
Pent ium-II PCs equipped with these PCI-SCI adapters are connected to a cluster
of comput ing nodes with NUMA characteristics (non-uniform memory access).

The SMILE PC cluster as well as other SCI-based parallel systems available
and accessable at LRR-TUM serve as plat forms for the software developments
within the SMILE project, studying how to m a p parallel p rogramming models
efficiently onto the SCI hardware.

The performance of such a parallel system with DSM depends on the effi-
cient use of local memory accesses through a parallel program. Although remote
memory accesses via hardware-supported DSM deliver high communicat ion per-
formance, they are still an order of magni tude more expensive than local ones.
Therefore, programming systems and tools for such parallel systems with NUMA

1 SMILE: Shared Memory in a LAN-like Environment

207

characteristics should enable and exploit data locality. However, these tools re-
quire detailed information about the dynamic behaviour of the running system.

Monitoring the dynamic behaviour of a compute cluster with hardware-
supported DSM like the SMILE PC cluster is very exacting because commu-
nication might occur implicitely on any read or write. This fact implies that
monitoring must be very fine-grained too, making it almost impossible to avoid
significiant probe overhead with software instrumentation.

In this paper we present a powerful and flexible event-driven hybrid monitor-
ing system for the SMILE SCI-based PC cluster with DSM. Our PCI-SCI adapter
architecture allows the attachment of a hardware monitor which is able to deliver
detailed information about the run-time and communication behaviour to tools
for performance evaluation and debugging. In order to be able to record all in-
teresting measurable entities with only limited hardware resources, the monitor
exploits the spatial and temporal locality of data and instruction accesses in a
similar way as cache memories in high-performance computer systems do.

Simulations of our monitoring approach helps us to make some initial design
decisions. Additionally, we give an overview of the use of the hardware monitor
in a hybrid performance evaluation system.

2 T h e S M I L E P C C l u s t e r A r c h i t e c t u r e

The Scalable Coherent Interface SCI (IEEE Std 1596-1992) has been chosen as
network fabric for the SMILE PC cluster.

The SCI standard [6] specifies the hardware interconnect and protocols al-
lowing to connect up to 64 K SCI nodes (processors, workstations, PCs, bus
bridges, switches) in a high-speed network. A 64-Bit global address space across
SCI nodes is defined as well as a set of read-, write-, and synchronization trans-
actions enabling SCI-based systems to provide hardware-supported DSM with
low-latency remote memory accesses. In addition to communication via DSM,
SCI also facilitates fast message-passing. SCI nodes are interconnected via point-
to-point links in ring-like arrangements or are attached to switches. The logical
layer of the SCI specification defines packet-switched communication protocols.
An SCI split transaction requires a request packet to be sent from one SCI node
to another node with a response packet in reply to it. This enables every SCI
node to overlap several transactions and allows for latencies of accesses to remote
memory to be hidden.

The lack of commercially available SCI interface hardware for PCs during
the initiation period of the SMILE project led to the development of our custom
PCI-SCI hardware. Its primary goal is to serve as the basis of the SMILE cluster
by bridging the PCs I/O bus with the SCI virtual bus.

Fig. 1 shows a high-level block diagram of the PCI-SCI adapter, which is
described in detail in [1]. The PCI-SCI adapter is divided into three logical
parts: the PCI unit, the Dual-Ported RAM (DPR), and the SCI unit.

The PCI unit interfaces to the PCI local bus. A 64 MByte address window on
the PCI bus Mlows to intercept processor-memory transactions which are then

208

translated into SCI transactions. For the interface to the PCI bus, the PCI9060
PCI bus master chip form PLX Technology is used. Also, packets arriving from
the SCI network, have to be transformed into PCI operations.

The packets to be sent via SCI are buffered within the Dual-Ported RAM. It
contains frames for outgoing packets allowing one outstanding read transaction,
16 outstanding write transactions, 16 outstanding messaging transactions using
a special DMA engine for long data transfers between nodes, and one read-
modify-write transaction which can be used for synchronization. Additionally,
64 incoming packets can be buffered.

The SCI unit interfaces to the SCI network and performs the SCI protocol
processing for packets in both directions. This interface is implemented with the
LinkController LC-1 from Dolphin Interconnect Solutions, which realizes the
physical layer and part of the logical layer of the SCI specification. The SCI
unit is connected to the DPR via the B-Link, the non-SCI link side of the LC-
1. Control information is passed between the PCI unit and the SCI unit via a
handshake bus. Two additional FPGAs, responsible for both the PCI-related
and B-Link-related processing complete the design.

3 T h e S M I L E H a r d w a r e M o n i t o r E x t e n s i o n C a r d

3.1 Overview

I

i PCI-SCI adapter (card #1) [

~ S~tout

I ~:;-I ~ ~ o~ent IL~-~io~
I ~a~e I ~ ~ ~,te~ ~ i ~

I I II I
I Hardware Monitor (card #2)

Fig. 1. The SMILE PCI-SCI adapter and the monitor card installed in a PC

The fine-grain nature of SCI's remote memory transactions and their level of
integration in the hardware makes it hard to trace and measure them in a manner
necessary to do performance analysis and debugging.

As mentioned in section 2, the B-Link carries all outgoing and incoming pack-
ets to the physical SCI interface, Dolphin's LinkController LC-1. It is therefore a

209

central sequentialization spot on which all remote memory traffic can be sensed.
The SMILE SCI hardware monitor thus is an additional PCI card at tached to
the original SCI adapter as shown in Fig. 1. Data that can be gathered f rom the
B-Link includes the transaction command, the target and source node IDs, the
node-internal address offset, and the packet data.

However, the design is naturally limited to remote memory traffic: a conven-
tionM plug-in PCI card does not enable us to moni tor internal memory accesses.
Nonetheless, remote memory accesses remain the most severe as mainly read ac-
cesses across the SCI network still account for more than one order of magni tude
higher latencies than local accesses.

3.2 W o r k i n g P r i n c i p l e

When memory access latency becomes an increasing problem during execution
of machine instruction streams, and speeding up the whole main memory of a
computer system appears not to be economically feasible, performance enhance-
ments are usually achieved through the use of cache memories.

mov %esl, %ecx

~_~ m o v % d x , (% e s i) . -

mov %esi, %ebx ''rq

add %dx, (%esi) memory

pushf r e ~ r e n c e h i t ?

ring buffer

s!uffed? ~

Interrupt

associative
counter array

counter #1

counter #2

counter #3

counter #4

counter #5 i .~

main
memory
ring
buffer

Fig. 2. The hardware monitor detects remote accesses. In order to allocate new coun-
ters, old counter value/tag pairs are flushed to the main memory ring buffer. Should it
overflow, an interrupt is generated

As da ta accesses and instruction fetches in typical programs exhibit a great
amount of temporal and spatial locality, cache memories only a t t empt to store a
small working set of memory pages (cache lines). A prerequisite for this, however,
is the use of a content-addressable memory as the covered address space usually
dramat ical ly exceeds the cache's capacity.

210

The same property holds for remote memory references in SCI-supported
distributed shared memory execution of parallel programs: It is highly likely
tha t a successive memory reference will access the same da ta i tem as its pre-
decessor or some da ta close by. A hardware monitor the duty of which is to
count memory accesses to specified memory regions can profit f rom this. The
most recently addressed memory references and their associated counter can be
stored in a register array with limited size. The detection of address proximity
allows to combine counter values, as the accesses to neighboring da ta i tems m a y
actually represent a single larger da ta object. E.g. it might be more interesting
to count the accesses to an array rather than the references to its elements. Only
recently unused memory references have to be flushed into external buffers, by
this reducing the amount of data that has to be transported.

Drawn from these principles, the SMILE hardware moni tor uses the concept
described in Fig. 2:

1. SCI remote memory accesses are sensed via the B-Link.
2. If the memory reference matches a tag in a counter array, the associated

counter is incremented. If no reference is found, a new counter-tag pair is
allocated and initialized to 1.

3. If no more space is available in the counter array, a counter-tag pair is flushed
to a larger ring buffer in main memory. This buffer is supposed to be emptied
by system software in a more or less cyclic fashion.

4. If a buffer overflow occurs nevertheless, a signal is sent to the software process
utilizing the moni tor in order to force the retrieval of the ring buffer's data .

Apar t from a part i t ion of counters working according to this principle (termed
dynamic counters), the monitor also contains a set of counters tha t are statically
preprogrammable (thus static counters) and are not covered in this work.

This addition to the monitor design was chosen in order to allow the user
to include pre-known memory areas that are supposed to be monitored anyway,
much like in conventional histogram monitors [10].

3.3 The Dynamic Coverage LRU Method

As one wants to reduce the amount of flushing and re-allocating counter- tag
pairs, it makes sense to integrate the strategy of counter coverage adapt ion into
the cache replacement mechanism. Under the prerequisite that counter tags can
name not only single addresses but also continuous areas of memory for which
the counter is to represent the accesses, a simple least-recently-used replacement
algori thm can be adapted to this special task. The m a x i m u m address range,
however, has to be predefined by the user. The Dynamic Coverage LRU method
is shown in Fig. 3.

3.4 The Hardware Design

The resource saving principle of the moni tor will hopefully allow us to construct
the additional plug-in adapter with a small number of high-density FPGAs. The

I wait for incoming address reference]',

I determine oldest tag, 1
flush counter-tag pair

.

Y

Y

I
,[count address event.]
[.poss!l~!y indicate ove~IowJ

tag I

Fig. 3. The Dynamic Coverage LRU mechanism

211

same commercial PCI master circuit already used with the SCI bridge will serve
again as its PCI interface.

The ring buffer will reside in the PCs main memory while its pointer registers
will be located on the monitor hardware. Access to the monitor and its registers
will be memory mapped in order to speed up accessing the device from user space.
As SCI does not restrict the use of read and write transactions to main memory
accesses, synchronization and configuration of a whole monitoring system can
also be performed via SCI: remote monitor cards can be mapped into g|obM
shared memory in the same way that application memory is made accessible to
other nodes.

4 E x p e r i m e n t a l E v a l u a t i o n a n d D e s i g n D e c i s i o n s

For initial performance assessments, a software simulator of the proposed hard-
ware monitor served as the basis of a number of experiments. Traces were gath-
ered by executing a number of the SPLASH-2 benchmark programs with the
multiprocessor memory system simulator Limes [9]. For this, a shared memory
system was assumed with the following properties:

loca l r e a d / w r i t e access l a t e n c y of 1 cycles, assuming they can be seen as
normally cached on a usual system,

r e m o t e w r i t e l a t e n c y of 20 cycles, corresponding to approx. 100 ns on a 200
MHz system (accounting for host bridge latencies when accessing the PCI
bus),

r e m o t e r e a d l a t e n c y of 1000 cycles, corresponding to approx. 5 #s on a 200
MHz system [7], and

212

r e m o t e lock l a t e n c y of 1000 cycles, as the processor gets stalled when waiting
for the result of the remote atomic read-modify-write operation.

The global shared memory in the SPLASH-2 applications was distr ibuted
over the nodes in pages of 4 Kbytes in a round-robin fashion. Due to this the
physical memory on a single node no longer represented a contiguous but ra ther
interleaved area of the global shared memory. The simulated DSM system con-
sisted of four nodes of x86 processors clocked at 200MHz.

Figures 4 and 5 represent the memory access histograms of the F F T and the
radix sort programs in the SPLASH-2 suite generated by this configuration.

Fig. 4. Left: Memory access histogram Fig. 5. Right: Memory access his-
for page 40 on node #0 of a 16K points togram for page 144 on node #0 of
FFT program in the SPLASH-2 suite a 64K keys RADIX program in the
run on a simulated 4-node SCI config- SPLASH-2 suite run on a simulated 4-
uration node SCI configuration

Both traces were run through the simulator while the number of dynamic
counters was varied. This served to help us find the opt imal hardware size of a
physical implementat ion: constraints are an as lean as possible hardware real-
ization which should still ensure low loads for buses and high-level tools.

Figures 6 and 7 display the results of these experiments.
The results follow intuition: the larger the number of counters is, the less

flushes to the ring buffer occur. The same holds when the area tha t a counter
can cover is increased: more and more adjacent acesses will be counted in a single
register. Naturally, there is an op t imum size for the m a x i m u m coverable range
depending on the program under test: for the F F T increasing this maximal range
to more than 16 bytes yields less counter range extensions. The reason for this
lies in the F F T ' s most ly neighboring accesses to complex numbers, reflecting
exactly a 16 byte granularity (two doub le values in C).

The RADIX results represent a different case: while for the overall work of
the monitor the same holds as for the F F T (a larger number of counters and
a bigger covered area account for less flushes), the number of counter range
extensions only decreases for increased areas when a larger number of counters
is working. This can, however, a t t r ibuted to the linear access pa t te rn in RADIX:

213

10000

I
1000

]
l oo

�9

!

�9 - . . 2.:,...

7000 ,

i=l
-~ 2800 l
~' 10oo[

Maximum ~ of ctwe~r ~d range |bytls I

counteis = ~
q

8 16 32 64 128 256
Maximum size of covered range [bytes]

Fig. 6. Number of flushes to the ring buffer and counter coverage extensions for the
FFT

100o0
. . . . co..te~ =- ~

128 256

M a x i m u m size i l l covered range [bytes]

J F ~ " , i~0ol /.,r ' ,
/ l / / \

li~IHig : ,"
] / ' . . \

I$ J ~ l ~ # + # COUnters.) l - -
/ = 4 §

4 g 16 32 64 128 256

M a x i m u m size of covered range [bytes]

Fig. 7. Number of flushes to the ring buffer and counter coverage extensions for RADIX

successive reads and writes can always be put into the same counter until the
maximum range has been reached. As soon as the counters are able to cover the
whole 4K page (e. g. 256 byte range • 16 counters = 4096 bytes), the number
of extensions decreases drastically.

A number of 16 or 32 counters appears to be a good compromise in a practical
implementation of this monitor. Already in this size the number of accesses to
main memory can be reduced significantly, even with relatively small ranges
covered by the counters.

As the current monitor design always writes a packet of 16 bytes to the ex-
ternal ring buffer, this means that for 16 counters the amount of flushed da ta
sums up to 84 KBytes for the F F T and 60 KBytes for RADIX. Given a simu-
lated runtime for the F F T of 0.127 sec and 1.142 sec for RADIX, this yields a
top average data rate of 661 KBytes/s . Roughly the same numbers hold for 32
counters. When the the Dynamic Coverage LRU is switched on with a maximum
range of larger than 1 word, this rate instantly drops to 280 KBytes/s .

With typical PC 2/O bandwidths of around 80 MB/s (PCI's nominal band-
width of 233 MByte/s can only be reached with infinite bursts), monitoring

214

represents a mere 0.8 % of the system's bus load and shouldn't influence pro-
gram execution too much.

Switching off all monitor optimizations (range of 4 byte, only one dynamic
counter) converts our hardware into a trace-writing monitor, creating trace data
at a maximum rate of 1.06 MB/s.

An external ring buffer has to be sized according to these figures and the
ability of a possible on-line monitoring software to make use of the sampled
data. Derived from rules of thumb, ring buffers in the 1 MByte range should
suffice to allow a reasonably relaxed access to flushed data without disturbing a
running application.

It has to be noted that we are currently restricted to page-sized areas that
can be covered by the dynamic counters of the monitor as PCI addresses are
physical addresses. This means that consecutive virtual addresses may be located
on different pages.

One solution to this problem would be to duplicate parts of the processor's
MMU mechanisms tables on the monitoring hardware in order to be able to re-
translate PC1 into virtual addresses. The obvious issue of hardware complexity
has so far excluded this possibility.

5 R e l a t e d W o r k

The parallel programming in environments with distributed memory is sup-
ported by a number of tools so that there are strong efforts in a standardization
of the monitoring interface [3].

Tool environments for DSM-oriented systems are less wide-spread. Mainly for
software-based DSM systems performance debugging tools have been developed,
which analyse traces for data locality [4] [2].

Over the last years, monitoring support has become increasingly available
on research as well on commercial machines. For the CC-NUMA FLASH multi-
processor system the hardware-implemented cache coherence mechanism is com-
plemented by components for the monitoring of fine-grained performance data
(number and duration of misses, invalidations etc.) [11]. Modern CPU chips
incorporate hardware counters which collect information about data accesses,
cache misses, TLB misses etc. For some multiprocessor systems these informa-
tion is exploited by performance analysis tools [12]

Martonosi et.al, propose a multi-dimensional histogram performance monitor
for the SHRIMP multiprocessor [10].

6 C o n c l u s i o n

In the paper we presented the rationale and the architecture of the distributed
hardware monitor for the SMILE DSM PC cluster. In order to be able to use
the information provided by these hardware monitors a performance evaluation
system needs a software infrastructure consisting of a local monitor library, a
communication and managing layer providing a global monitor abstraction.

215

This items will be covered in an OMIS [8] compliant implementation of a
prototypicM DSM monitoring infrastructure.

References

1. G. Acher, H. Hellwagner, W. Karl, and M. Leberecht. A PCI-SCI Bridge for Build-
ing a PC-Cluster with Distributed Shared Memory. In Proceedings The Sixth In-
ternational Workshop on SCI-based High-Performance Low-Cost Computing, pages
1-8, Santa Clara, CA, Sept. 1996. SCIzzL.

2. D. Badouel, T. Priol, and L. Renambot. SVMview: A Performance Tuning Tool
for DSM-Based Parallel Computers. In L. Boug, P. Fraigniand, A. Mignotte, and
Y. Robert, editors, EuroPar'96- Parallel Processing, number 1123 in LNCS, pages
98-105, Lyon, France, Aug. 1996. Springer Verlag.

3. A. Bode. Run-Time Oriented Design Tools: A Contribution to the Standardiza-
tion of the Development Environments for Parallel and Distributed Programs. In
F. Hofeld, E. Maehle, and E. W. Mayr, editors, Proceedings of the 4th Workshop
PASA '96 Parallel Systems ~ Algorithms, pages 1-12. World Scientific, 1997.

4. M. Gerndt. Performance Analysis Environment dor SVM-Fortran Programs. Tech-
nical Report IB-9417, Research Centre Jlich (KFA), Central Institute for Applied
Mathematics, Jlich, Germany, 1994.

5. H. Hellwagner, W. Karl, and M. Leberecht. Enabling a PC Cluster for High-
Performance Computing. SPEEDUP Journal, 11(1), June 1997.

6. IEEE Standard for the Scalable Coherent Interface (SCI). IEEE Std 1596-1992,
1993. IEEE 345 East 47th Street, New York, NY 10017-2394, USA.

7. M. Leberecht. A Concept for a Multithreaded Scheduling Environment. In
F. Hofeld, E. Maehle, and E. W. Mayr, editors, Proceedings of the 4th Work-
shop on PASA '96 Parallel Systems 8~ Algorithms, pages 161-175. World Scientific,
1996.

8. T. Ludwig, R. Wism/iller, V. Sunderam, and A. Bode. OMIS - - On-line Monitoring
Interface Specification (Version 2.0). TUM-19733, SFB-Bericht Nr. 342/22/97 A,
Technische Universits Miinchen, Munich, Germany, July 1997.

9. D. Magdic. Limes: An Execution-driven Multiprocessor Simulation Tool for the
i486+-based PCs. School of Electrical Engineering, Department of Computer En-
gineering, University of Belgrade, POB 816 11000 Belgrade, Serbia, Yugoslavia,
1997.

10. M. Martonosi, D. W. Clark, and M. Mesarina. The SHRIMP Performance Moni-
tor: Design and Applications. In Proceeding 1996 SIGMETRICS Symnposium on
Parallel and Distributed Tools (SPDT'96}, pages 61-69, Philadelphia, PA, USA,
May 1996. ACM.

11. M. Martonosi, D. Ofelt, and M. Heinrich. Integrating Performance Monitoring and
Communication in Parallel Computers. In SIGME TRICS '96 1996 A CM Sigmetrics
Conference on Measurement and Modeling of Computer Systems, 1996.

12. M. Zagha, B. Larson, S. Turner, and M. Itzkowitz. Performance Analysis Using
the MIPS R10000 Performance Counters. In Supercomputing SC'96, 1996.

