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Abs t r ac t .  The performance of a parallel system with NUMA character- 
istics depends on the efficient use of local memory accesses. Programming 
and tool environments for such DSM systems should enable and exploit 
data locality. 
In this paper we present an event-driven hybrid monitoring concept for 
the SMILE SCI-based PC cluster. The central part of the hardware mon- 
itor consists of a content-addressable counter array managing a small 
working set of the most recently referenced memory regions. We show 
that this approach allows to provide detailed run-time information which 
can be exploited by performance evaluation and debugging tools. 

1 Introduct ion 

The SMILE 1 project at LRR-TUM investigates high-performance cluster com- 
puting based on Scalable Coherent Interface SCI as interconnection technology 
[5]. Within this project, an SCI-based PC cluster with distr ibuted shared mem-  
ory (DSM) is being built. In order to be able to set up such a PC cluster we 
have developed a PCI-SCI adapter targeted to plug into the PCI  bus of a PC. 
Pent ium-II  PCs equipped with these PCI-SCI  adapters are connected to a cluster 
of comput ing nodes with NUMA characteristics (non-uniform memory  access). 

The SMILE PC cluster as well as other SCI-based parallel systems available 
and accessable at LRR-TUM serve as plat forms for the software developments 
within the SMILE project, studying how to m a p  parallel p rogramming  models 
efficiently onto the SCI hardware. 

The performance of such a parallel system with DSM depends on the effi- 
cient use of local memory  accesses through a parallel program. Although remote 
memory  accesses via hardware-supported DSM deliver high communicat ion per- 
formance,  they are still an order of magni tude more expensive than  local ones. 
Therefore, programming systems and tools for such parallel systems with NUMA 

1 SMILE: Shared Memory in a LAN-like Environment 
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characteristics should enable and exploit data locality. However, these tools re- 
quire detailed information about the dynamic behaviour of the running system. 

Monitoring the dynamic behaviour of a compute cluster with hardware- 
supported DSM like the SMILE PC cluster is very exacting because commu- 
nication might occur implicitely on any read or write. This fact implies that 
monitoring must be very fine-grained too, making it almost impossible to avoid 
significiant probe overhead with software instrumentation. 

In this paper we present a powerful and flexible event-driven hybrid monitor- 
ing system for the SMILE SCI-based PC cluster with DSM. Our PCI-SCI adapter 
architecture allows the attachment of a hardware monitor which is able to deliver 
detailed information about the run-time and communication behaviour to tools 
for performance evaluation and debugging. In order to be able to record all in- 
teresting measurable entities with only limited hardware resources, the monitor 
exploits the spatial and temporal locality of data and instruction accesses in a 
similar way as cache memories in high-performance computer systems do. 

Simulations of our monitoring approach helps us to make some initial design 
decisions. Additionally, we give an overview of the use of the hardware monitor 
in a hybrid performance evaluation system. 

2 T h e  S M I L E  P C  C l u s t e r  A r c h i t e c t u r e  

The Scalable Coherent Interface SCI (IEEE Std 1596-1992) has been chosen as 
network fabric for the SMILE PC cluster. 

The SCI standard [6] specifies the hardware interconnect and protocols al- 
lowing to connect up to 64 K SCI nodes (processors, workstations, PCs, bus 
bridges, switches) in a high-speed network. A 64-Bit global address space across 
SCI nodes is defined as well as a set of read-, write-, and synchronization trans- 
actions enabling SCI-based systems to provide hardware-supported DSM with 
low-latency remote memory accesses. In addition to communication via DSM, 
SCI also facilitates fast message-passing. SCI nodes are interconnected via point- 
to-point links in ring-like arrangements or are attached to switches. The logical 
layer of the SCI specification defines packet-switched communication protocols. 
An SCI split transaction requires a request packet to be sent from one SCI node 
to another node with a response packet in reply to it. This enables every SCI 
node to overlap several transactions and allows for latencies of accesses to remote 
memory to be hidden. 

The lack of commercially available SCI interface hardware for PCs during 
the initiation period of the SMILE project led to the development of our custom 
PCI-SCI hardware. Its primary goal is to serve as the basis of the SMILE cluster 
by bridging the PCs I/O bus with the SCI virtual bus. 

Fig. 1 shows a high-level block diagram of the PCI-SCI adapter, which is 
described in detail in [1]. The PCI-SCI adapter is divided into three logical 
parts: the PCI unit, the Dual-Ported RAM (DPR), and the SCI unit. 

The PCI unit interfaces to the PCI local bus. A 64 MByte address window on 
the PCI bus Mlows to intercept processor-memory transactions which are then 
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translated into SCI transactions. For the interface to the PCI bus, the PCI9060 
PCI bus master chip form PLX Technology is used. Also, packets arriving from 
the SCI network, have to be transformed into PCI operations. 

The packets to be sent via SCI are buffered within the Dual-Ported RAM. It 
contains frames for outgoing packets allowing one outstanding read transaction, 
16 outstanding write transactions, 16 outstanding messaging transactions using 
a special DMA engine for long data transfers between nodes, and one read- 
modify-write transaction which can be used for synchronization. Additionally, 
64 incoming packets can be buffered. 

The SCI unit interfaces to the SCI network and performs the SCI protocol 
processing for packets in both directions. This interface is implemented with the 
LinkController LC-1 from Dolphin Interconnect Solutions, which realizes the 
physical layer and part of the logical layer of the SCI specification. The SCI 
unit is connected to the DPR via the B-Link, the non-SCI link side of the LC- 
1. Control information is passed between the PCI unit and the SCI unit via a 
handshake bus. Two additional FPGAs, responsible for both the PCI-related 
and B-Link-related processing complete the design. 

3 T h e  S M I L E  H a r d w a r e  M o n i t o r  E x t e n s i o n  C a r d  

3.1 Overview 

I 

i PCI-SCI adapter (card #1) [ 

~ S~tout 

I ~:;-I ~ ~ o~ent IL~-~io~ 
I ~a~e I ~ ~ ~,te~ ~ i ~  

I I II I 
I Hardware Monitor (card #2) 

Fig. 1. The SMILE PCI-SCI adapter and the monitor card installed in a PC 

The fine-grain nature of SCI's remote memory transactions and their level of 
integration in the hardware makes it hard to trace and measure them in a manner 
necessary to do performance analysis and debugging. 

As mentioned in section 2, the B-Link carries all outgoing and incoming pack- 
ets to the physical SCI interface, Dolphin's LinkController LC-1. It is therefore a 



209 

central sequentialization spot on which all remote memory  traffic can be sensed. 
The  SMILE SCI hardware monitor  thus is an additional PCI  card at tached to 
the original SCI adapter  as shown in Fig. 1. Data  that  can be gathered f rom the 
B-Link includes the transaction command,  the target  and source node IDs, the 
node-internal address offset, and the packet data.  

However, the design is naturally limited to remote memory  traffic: a conven- 
tionM plug-in PCI  card does not enable us to moni tor  internal memory  accesses. 
Nonetheless, remote memory  accesses remain the most  severe as mainly  read ac- 
cesses across the SCI network still account for more than one order of magni tude  
higher latencies than  local accesses. 

3.2 W o r k i n g  P r i n c i p l e  

When memory  access latency becomes an increasing problem during execution 
of machine instruction streams, and speeding up the whole main  memory  of a 
computer  system appears not to be economically feasible, performance enhance- 
ments  are usually achieved through the use of cache memories.  

mov %esl, %ecx 

~_~ m o v  % d x ,  ( % e s i )  . -  . . . . . . .  .. 

mov %esi, %ebx ''rq 

add %dx, (%esi) memory 

pushf r e ~ r e n c e h i t ?  

ring buffer 

s!uffed? ~ . . . . .  

Interrupt 

associative 
counter array 

counter #1 

counter #2 

counter #3 

counter #4 

counter #5 ....... i .~ 

main 
memory 
ring 
buffer 

Fig. 2. The hardware monitor detects remote accesses. In order to allocate new coun- 
ters, old counter value/tag pairs are flushed to the main memory ring buffer. Should it 
overflow, an interrupt is generated 

As da ta  accesses and instruction fetches in typical programs exhibit a great 
amount  of temporal  and spatial locality, cache memories only a t t empt  to store a 
small  working set of memory  pages (cache lines). A prerequisite for this, however, 
is the use of a content-addressable memory  as the covered address space usually 
dramat ical ly  exceeds the cache's capacity. 
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The same property holds for remote memory  references in SCI-supported 
distributed shared memory  execution of parallel programs: It  is highly likely 
tha t  a successive memory  reference will access the same da ta  i tem as its pre- 
decessor or some da ta  close by. A hardware monitor  the duty of which is to 
count memory  accesses to specified memory  regions can profit f rom this. The 
most  recently addressed memory  references and their associated counter can be 
stored in a register array with limited size. The detection of address proximity 
allows to combine counter values, as the accesses to neighboring da ta  i tems m a y  
actually represent a single larger da ta  object. E.g. it might  be more interesting 
to count the accesses to an array rather  than the references to its elements. Only 
recently unused memory  references have to be flushed into external buffers, by 
this reducing the amount  of data  that  has to be transported.  

Drawn from these principles, the SMILE hardware moni tor  uses the concept 
described in Fig. 2: 

1. SCI remote memory  accesses are sensed via the B-Link. 
2. If  the memory  reference matches a tag in a counter array, the associated 

counter is incremented. If  no reference is found, a new counter-tag pair is 
allocated and initialized to 1. 

3. If  no more space is available in the counter array, a counter-tag pair is flushed 
to a larger ring buffer in main memory.  This buffer is supposed to be emptied 
by system software in a more or less cyclic fashion. 

4. If  a buffer overflow occurs nevertheless, a signal is sent to the software process 
utilizing the moni tor  in order to force the retrieval of the ring buffer's data .  

Apar t  from a part i t ion of counters working according to this principle ( termed 
dynamic counters), the monitor  also contains a set of counters tha t  are statically 
preprogrammable  (thus static counters) and are not covered in this work. 

This addition to the monitor  design was chosen in order to allow the user 
to include pre-known memory  areas that  are supposed to be monitored anyway, 
much like in conventional histogram monitors [10]. 

3.3 The Dynamic  Coverage LRU Method 

As one wants to reduce the amount  of flushing and re-allocating counter- tag 
pairs, it makes sense to integrate the strategy of counter coverage adapt ion into 
the cache replacement mechanism. Under the prerequisite that  counter tags can 
name not only single addresses but also continuous areas of memory  for which 
the counter is to represent the accesses, a simple least-recently-used replacement  
algori thm can be adapted to this special task. The m a x i m u m  address range, 
however, has to be predefined by the user. The Dynamic  Coverage LRU method  
is shown in Fig. 3. 

3.4 The Hardware Design 

The resource saving principle of the moni tor  will hopefully allow us to construct 
the additional plug-in adapter with a small number  of high-density FPGAs.  The  
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Fig. 3. The Dynamic Coverage LRU mechanism 

211 

same commercial PCI master circuit already used with the SCI bridge will serve 
again as its PCI interface. 

The ring buffer will reside in the PCs main memory while its pointer registers 
will be located on the monitor hardware. Access to the monitor and its registers 
will be memory mapped in order to speed up accessing the device from user space. 
As SCI does not restrict the use of read and write transactions to main memory 
accesses, synchronization and configuration of a whole monitoring system can 
also be performed via SCI: remote monitor cards can be mapped into g|obM 
shared memory in the same way that  application memory is made accessible to 
other nodes. 

4 E x p e r i m e n t a l  E v a l u a t i o n  a n d  D e s i g n  D e c i s i o n s  

For initial performance assessments, a software simulator of the proposed hard- 
ware monitor served as the basis of a number of experiments. Traces were gath- 
ered by executing a number of the SPLASH-2 benchmark programs with the 
multiprocessor memory system simulator Limes [9]. For this, a shared memory 
system was assumed with the following properties: 

loca l  r e a d / w r i t e  access  l a t e n c y  of 1 cycles, assuming they can be seen as 
normally cached on a usual system, 

r e m o t e  w r i t e  l a t e n c y  of 20 cycles, corresponding to approx. 100 ns on a 200 
MHz system (accounting for host bridge latencies when accessing the PCI 
bus), 

r e m o t e  r e a d  l a t e n c y  of 1000 cycles, corresponding to approx. 5 #s on a 200 
MHz system [7], and 
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r e m o t e  lock  l a t e n c y  of 1000 cycles, as the processor gets stalled when waiting 
for the result of the remote atomic read-modify-write operation. 

The global shared memory  in the SPLASH-2 applications was distr ibuted 
over the nodes in pages of 4 Kbytes in a round-robin fashion. Due to this the 
physical memory  on a single node no longer represented a contiguous but ra ther  
interleaved area of the global shared memory.  The simulated DSM system con- 
sisted of four nodes of x86 processors clocked at 200MHz. 

Figures 4 and 5 represent the memory  access histograms of the F F T  and the 
radix sort programs in the SPLASH-2 suite generated by this configuration. 

Fig. 4. Left: Memory access histogram Fig. 5. Right: Memory access his- 
for page 40 on node #0  of a 16K points togram for page 144 on node #0  of 
FFT program in the SPLASH-2 suite a 64K keys RADIX program in the 
run on a simulated 4-node SCI config- SPLASH-2 suite run on a simulated 4- 
uration node SCI configuration 

Both traces were run through the simulator while the number  of dynamic  
counters was varied. This served to help us find the opt imal  hardware size of a 
physical implementat ion:  constraints are an as lean as possible hardware real- 
ization which should still ensure low loads for buses and high-level tools. 

Figures 6 and 7 display the results of these experiments. 
The  results follow intuition: the larger the number  of counters is, the less 

flushes to the ring buffer occur. The same holds when the area tha t  a counter 
can cover is increased: more and more adjacent acesses will be counted in a single 
register. Naturally, there is an op t imum size for the m a x i m u m  coverable range 
depending on the program under test: for the F F T  increasing this maximal  range 
to more than 16 bytes yields less counter range extensions. The reason for this 
lies in the F F T ' s  most ly  neighboring accesses to complex numbers,  reflecting 
exactly a 16 byte granularity (two doub le  values in C). 

The RADIX results represent a different case: while for the overall work of 
the monitor  the same holds as for the F F T  (a larger number  of counters and 
a bigger covered area account for less flushes), the number  of counter range 
extensions only decreases for increased areas when a larger number  of counters 
is working. This can, however, a t t r ibuted to the linear access pa t te rn  in RADIX: 
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Fig.  7. Number of flushes to the ring buffer and counter coverage extensions for RADIX 

successive reads and writes can always be put into the same counter until the 
maximum range has been reached. As soon as the counters are able to cover the 
whole 4K page (e. g. 256 byte range • 16 counters = 4096 bytes), the number 
of extensions decreases drastically. 

A number of 16 or 32 counters appears to be a good compromise in a practical 
implementation of this monitor. Already in this size the number of accesses to 
main memory can be reduced significantly, even with relatively small ranges 
covered by the counters. 

As the current monitor design always writes a packet of 16 bytes to the ex- 
ternal ring buffer, this means that  for 16 counters the amount  of flushed da ta  
sums up to 84 KBytes for the F F T  and 60 KBytes for RADIX. Given a simu- 
lated runtime for the F F T  of 0.127 sec and 1.142 sec for RADIX, this yields a 
top average data  rate of 661 KBytes/s .  Roughly the same numbers hold for 32 
counters. When the the Dynamic Coverage LRU is switched on with a maximum 
range of larger than 1 word, this rate instantly drops to 280 KBytes/s .  

With typical PC 2/O bandwidths of around 80 MB/s  (PCI's nominal band- 
width of 233 MByte/s  can only be reached with infinite bursts), monitoring 
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represents a mere 0.8 % of the system's bus load and shouldn't influence pro- 
gram execution too much. 

Switching off all monitor optimizations (range of 4 byte, only one dynamic 
counter) converts our hardware into a trace-writing monitor, creating trace data 
at a maximum rate of 1.06 MB/s. 

An external ring buffer has to be sized according to these figures and the 
ability of a possible on-line monitoring software to make use of the sampled 
data. Derived from rules of thumb, ring buffers in the 1 MByte range should 
suffice to allow a reasonably relaxed access to flushed data without disturbing a 
running application. 

It has to be noted that we are currently restricted to page-sized areas that 
can be covered by the dynamic counters of the monitor as PCI addresses are 
physical addresses. This means that consecutive virtual addresses may be located 
on different pages. 

One solution to this problem would be to duplicate parts of the processor's 
MMU mechanisms tables on the monitoring hardware in order to be able to re- 
translate PC1 into virtual addresses. The obvious issue of hardware complexity 
has so far excluded this possibility. 

5 R e l a t e d  W o r k  

The parallel programming in environments with distributed memory is sup- 
ported by a number of tools so that there are strong efforts in a standardization 
of the monitoring interface [3]. 

Tool environments for DSM-oriented systems are less wide-spread. Mainly for 
software-based DSM systems performance debugging tools have been developed, 
which analyse traces for data locality [4] [2]. 

Over the last years, monitoring support has become increasingly available 
on research as well on commercial machines. For the CC-NUMA FLASH multi- 
processor system the hardware-implemented cache coherence mechanism is com- 
plemented by components for the monitoring of fine-grained performance data 
(number and duration of misses, invalidations etc.) [11]. Modern CPU chips 
incorporate hardware counters which collect information about data accesses, 
cache misses, TLB misses etc. For some multiprocessor systems these informa- 
tion is exploited by performance analysis tools [12] 

Martonosi et.al, propose a multi-dimensional histogram performance monitor 
for the SHRIMP multiprocessor [10]. 

6 C o n c l u s i o n  

In the paper we presented the rationale and the architecture of the distributed 
hardware monitor for the SMILE DSM PC cluster. In order to be able to use 
the information provided by these hardware monitors a performance evaluation 
system needs a software infrastructure consisting of a local monitor library, a 
communication and managing layer providing a global monitor abstraction. 
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This items will be covered in an OMIS [8] compliant implementation of a 
prototypicM DSM monitoring infrastructure. 
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