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Abst rac t .  This paper presents a workload characterization for worksta- 
tions, servers and WWW servers. Twelve data sets built from standard 
UNIX tools and from access.log files are analyzed with three different 
time scales. We demonstrate that the workload of these resources is sta- 
tistically self-similar in the periods of irregular activity. 

1 I n t r o d u c t i o n  

The resource sharing in a network of workstations and in Internet is the aim of 
a large number of research projects. Fundamental to this goal is to understand 
the initial workload characteristics of each resource. 

Most of the mechanisms (CONDOR [1] and GLUNIX [2]) for workload dis- 
tribution try to detect the periods when the user does not use its workstation. 
Nevertheless, even when the user uses its workstation, the initial workload may 
stay very low. This under-exploitation provides the potential to gather unex- 
ploited resources for more agressive users. This goal requires to s tudy carefully 
the initial workload of a workstation during the user activity. The workload 
characterization of W W W  servers is more recent. In [3], the self-similarity of 
W W W  server workload is investigated. The automatic  workload distribution of 
the W W W  requests on mirror sites is an open issue. 

We use a global approach to characterize the complexity of the workload. 
This approach is close to the one used for network traffic analysis [4] [5]. 

2 M e t h o d  f o r  t h e  W o r k l o a d  Study 

More than a hundred of resources are connected in our network of workstations. 
The machines are used for numerical processing, some heavy simulations and 
student and researcher works (compiler, mailer, browser, etc.). The  highly com- 
puting applications saturate the computer and lead to a typical flat plot for the 
workload. The server workload is typically much more irregular. The workstation 
workload is a composition of the previous ones: null during the night, sometimes 
irregular and sometimes saturated during the day. 

We have also analyzed two W W W  servers: our lab W W W  server, called 
LRI and the Ethernet backbone of the computing research department  of the 
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Virginia University of technology (USA). The trace for the LRI server starts at 
October 31, 1995 and finishes at August 4, 1997. For the second W W W  server, 
only the external requests at .cs.vt.edu domain have been recorded during a 38 
days period. We analyze the hits and the transfered bytes per time. 

We choose to use three time scales of analysis because the event granularities 
are different in a workstation, a server and a W W W  server. The statistical analy- 
sis, requires about 100.000 events to give results with an acceptable quality. This 
number corresponds to 50 days for the minute time scale (WWW server workload 
analysis). It represents a daily period for the 1 second time scale (workstation 
workload analysis). To understand the workstation and server micro-workloads 
we have used a 5 milliseconds time scale (100.000 events represent 8 minutes). 

The workload measurement of the servers and workstations has been done 
with the vmstat UNIX command (average percentage of the CPU availability). 
We have used a method based on a snoopy process with low priority to mea- 
sure the workload with the 5 millisecond resolution. The accesses to the W W W  
servers have been recorded in the access.log file. 

3 S e l f - s i m i l a r i t y  

Intuitively, a self-similar signal may be observed graphically as presenting invari- 
ant features for differents time scales. As in [4], we consider the workload signal 
as a wide-sense stationary stochastic process (stationary up to order 2). In such 
process, the mean (#) and the variance (a2) stay constant over time. 

Let X(t) be such a stochastic process. X(t) has an auto-covarianee func- 
tion, R(r) ,  and an autocorrelation function p(r)  of the form R(r)  = E[(X(t) - 
p)(X(t  + r) - #)] and p(r) =- R(r)/R(O) = R(r ) /~  2. We assume that  X(t)  is 
of the form p(r) --+ r -~n(r) ,  when r --+ co (1), where L(r) is slowly varying at 
infinity. (examples of such function are: n(r) = coast, L(r) = log(v)). 

Let X(m) denotes a new time series obtained by averaging the original series 
X in non-overlapping blocks of size m. Tha t  is: X(m) = (1/m)(Xt,~-m+l + 
Xtm-m+= + . . .  + Xtm). Let p('~)(r) denotes the autocorrelation function of 
X (m). If the aggregated process X (m) has the same autocorrelation structure as 
X,  the process X is called exactly second order self-similar with self-similarity 
parameter  H = 1 - / 3 / 2 ,  i.e., p(m)(r) = p(r). X is called asymptotical  second 
order self-similar with self-similarity parameter H = 1 - / ~ / 2 ,  if we assume 
p(m)(r) -+ p(r) for large m and r .  

In the next section we use three methods to test and characterize the self- 
similarity of a stochastic process: the variance-time graphic of the X ('~) pro- 
cesses, the R/S  analysis [4] and Whitt le  estimator [6]. All methods give an es- 
t imate of H (the self-similarity parameter).  H larger than 1/2 and lower that  
1 suggests the self-similarity of the signal. A rigorous introduction to the self- 
similar phenomenon can be found in [4]. 

4 R e s u l t s  

The data  sets size is about 70.000 measurements. Eight machines have been 
closely analyzed in the network of workstations. The table 4 gathers the esti- 
mates of H with the three methods for the observed machines in the network of 
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workstations. For all machines, H is larger than 1/2 and lower than 1 and ~ is 
between 0 and 1. So, together the 3 methods suggest that  self-similar stochastic 
processes may  be used to represent closely these machine workloads. 
Table  1. H estimates for the CPU workload signals (1 second and 5 ms time scales), 
variance analysis of the X ('~) processes, R/S analysis and Whittle estimates 

Sunl 
Sun2 
!Sun3 
'Sun4 
Sun5 
Sun6 
HP1 
HP2 

1 
~(VAR) 

0.41 
0.29 
0.21 
0.48 

0.30 
0.37 

second time scale 
H(VAR) H(R/S) H(W) 3(VAR) 

0.79 0.69 0.92 
0.85 0.64 0.31 
0.89 0.57 0.86 0.49 
0.75 0.64 0.99 

0.68 
0.34 

0.84 0.79 0.86 
0.81 0.80 0.79 - 

5 ms time scale 
H(VAR) H(R/S) H(W) 

o.a4 o.;ze 
0.75 0.66 0.85' 

0.65 0.89 0.91 
0.82 0.84 0.81 

The  results of the estimates for the H parameter  for the W W W  servers with 
the various methods are presented in table 4. The first three taws present the 
est imates for H and /? for three different segments of the LRI trace. The raw 
labeled BR gives the results for the Ethernet backbone of the computer  science 
depar tment  (Virginia University). The values of H and beta for these traces 
indicates that  both signals (hits per minute  and t ransmit ted  bytes per minute) 
might  be closely represented by self-similar processes. 
Table  2. H estimates of hits per second and bytes per second for the WWW servers. 
The method used for each estimate is indicated between parentheses. 

hit09 
hit28 
hit31 
BR 

~(VAR) 
0.50 
0.62 
0.64 
0.43 

Hits per second Bytes per second 
H(VAR) H(R/S) H(W) ~(VAR) H(VAR) H(R/S)iH(VI2)] 

0.74 0.71 0.86 0.64 0.68 0.71 0.74_] 
0.68 0.74 0.78 0.62 0.68 0.76 0.72 
0.67 0.78 0.75 0.75 0.62 0.72 0.61~ 
0.78 0.88 - 0.63 0.68 0.83 - 

5 A n a l y s i s  o f  R e s u l t s  a n d  C o n c l u s i o n  

We have shown that  self-similar stochastic processes correspond to the workload 
of these resources (in the periods of irregular activity).  

A more accurate confidence interval for the est imates of H may  be obtained 
with the Whit t le  est imator  applied to larger da ta  sets or with other methods  
such as the wavelet methods: [7] has recently shown that  some network traffics 
were multi-fractal  instead of mono-fractal  (H is varying with time).  

Our result about  the self-similar nature of the W W W  server workload is 
contrary to the one given in [3]. In their da ta  set, there are several defects : zero 
hit for several hours, or very punctual high volume transfers. Removing these 
punctual  defects changes the conclusions and suggest that  the self-similarity 
is not as rare as the authors have suggested and that  high per turbat ions  may  
alterate the results of the self-similarity tests. 
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The knowledges about self-similarity in W W W  servers are getting wider. 
In [8], the authors propose an explanation for the nature of client site W W W  
traffic. The article [9] provides an interesting result: superposition of self-similar 
processes yields to a self-similar process with fractional Gaussian noises. [4] has 
presented some consequences of traffic self-similarity on communication network 
engineering. There are drastic implications on modeling the individual source, 
on the notion of "burstiness" and on the congestion management.  

The methods and the results obtained in the field of communication networks 
may be used as the bases for further works in the workload management  area. 
For example, the estimate of H may be used to generate synthetic traces from 
the fractional Gaussian noise model [10] or from the fractional ARIMA (p, d, 
q) processes [11]. The synthetic traces would represent the initial workload of a 
workstation, a server or a W W W  server. 
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