
The Hardware/Software Balancing Act for
Information Retrieval on Symmetric

Multiprocessors

Zhihong Lu Kathryn S. McKinley Brendon Cahoon

Department of Computer Science
University of Massachusetts

Amherst, MA 01003
{zlu, mckinley, cahoon}@cs.umass.edu

Abs t r ac t . Web search engines, such as AltaVista and Infoseek, handle
tremendous loads by exploiting the parallelism implicit in their tasks
and using symmetric multiprocessors to support their services. The web
searching problem that they solve is a special case of the more general
information retrieval (IR) problem of locating documents relevant to the
information need of users. In this paper, we investigate how to exploit
a symmetric multiprocessor to build high performance IR servers. Al-
though the problem can be solved by throwing lots of CPU and disk
resources at it, the important questions are how much of which hardware
and what software structure is needed to effectively exploit hardware
resources. We have found, to our surprise, that in some cases adding
hardware degrades performance rather than improves it. We show that
multiple threads are needed to fully utilize hardware resources. Our in-
vestigation is based on InQuery, a state-of-the-art full-text information
retrieval engine.

1 I n t r o d u c t i o n

As information explodes across the Web and elsewhere, people increasingly de-
pend on search engines to help them to find information. Web searching is a
special case of the more general information retrieval (IR) problem of locating
documents relevant to the information need of users. In this paper, we inves-
t igate how to bMance hardware and software resources to exploit a symmetr ic
multiprocessor (SMP) architecture to build high performance IR servers. Our IR
server is based on InQuery [2, 3], a state-of-the-art full-text information retrieval
engine that is widely used in Web search engines, large libraries, companies, and
governments such as Infoseek, Library of Congress, White House, West Pub-
lishing, and Lotus [5]. Our work is novel because it investigates a reM, proven
effective system under a variety of realistic workloads and hardware configura-
tions on an SMP architecture. The previous research investigates either the IR
system on massively parallel processing (MPP) architecture or it investigates
only a subset of the system on SMP architecture such as the disk system or it
compares the cost factors of SMP architecture with other architectures. (See [6]

522

for a more thorough comparison with the related work). Our results provide in-
sights for building high performance IR servers for searching the Web and other
environments using a symmetric multiprocessor.

The remainder of this paper is organized as follows. The next section de-
scribes the implementation of our parallel IR server and simulator. Section 3
presents results that demonstrate the system scalability and hardware/software
balancing with respect to multiple threads, CPUs, and disks. Section 4 summa-
rizes our results and concludes.

2 A P a r a l l e l I n f o r m a t i o n R e t r i e v a l S e r v e r

This section describes the implementation of our parallel IR server and simulator.
We begin with a brief description of the InQuery retrieval engine [2, 3, 5]. We
next present the features we model and summarize our validation of the simulator
against the multi threaded implementation.

I n Q u e r y R e t r i e v a l E n g i n e

InQuery is one of the most powerful and advanced full-text information retrieval
engines in commercial or government use today [5]. It uses an inference network
model, which applies Bayesian inference networks to represent documents and
queries, and views information retrieval as an inference or evidential reasoning
process [2, 3]. The inference networks are implemented as inverted files. In this
paper, we use "collection" to refer to a set of documents, and "database" to refer
to an indexed collection.

The InQuery server supports a range of IR commands such as query, doc-
ument, and relevance feedback. The three basic IR commands we model are:
query, summary, and document. A query command requests documents that
match a set of terms. A query response consists of a list of top ranked document
identifiers. A summary command consists of a set of document identifiers. A
summary response includes the document titles and the first few sentences of
the documents. A document command requests a document using its document
identifier. The response includes the complete text of the document.

T h e P a r a l l e l I R S e r v e r

To investigate the bMance between hardware and software in a IR system on a
symmetric multiprocessor, we implemented a parallel IR server using InQuery
as the retrieval engine. The parallel IR server exploits parallelism as follows:
(1) It executes multiple IR commands in parallel by multithreading; and (2) It
executes one command against multiple partitions of a collection in parallel. To
expedite our investigation of possible system configurations, characteristics of
IR collections, and the basic IR system performance, we implement a simulator
with numerous system parameters, such as the number of CPUs, threads, disks,
collection size, and query characteristics. Table 1 presents all the parameters and
the values we use in our experiments.

The simulation model is driven by empirical timing measurements from the
actual system. For queries, summaries, and documents, we measure CPU and

Table I . Experimental Parameters

Parameters

Query Number
Terms per Query (average)
shifted neg. binomial dist. (n,p,s)
Query Term Frequency
dist. from queries
Client Arrival Pa t te rn
Poisson process (requests per minute)
Collection Size GB)
Disk Number
CPU Number
Thread NUmber

AbbreviationJt Values ll

QN

TPQ

QTF

A
' CSIZIg

DISK
CPU
TH

I000
2

(4,0.8,1)

Observed Distribution
6 30 60 90 120
150 180 240 300
1 2 4 8 16
1 2 4 8 16
1 2 3 4
1 2 4 8 16 32

523

disk usage for each operation, but do not measure the memory and cache effects.
We model the collection and queries by obtaining document and term statistics
from test collections and real query sets (See [1,6] for more details.)

We validate our simulator against the multi threaded implementation. The
simulator reports response times that are 4.5% slower than the actual system on
the average (See [6] for more details).

3 E x p e r i m e n t s a n d R e s u l t s

This section explores how software and hardware configurations affect system
scalability with respect to multiple threads, CPUs, and disks.

We start with a base system that consists of one thread, CPU, and disk. This
system is disk bound. We improve the performance of our IR server through
better software: multithreading; and with additional hardware: CPUs and disks.
We demonstrate the system scalability using two sets of experiments. In the
first set of experiments, we explore the effects of threading on system scalability.
In the second set of experiments, we explore system scalability by increasing
the collection size from 1 GB to 16 GB. When multiple disks exist, we use a
round-robin strategy to distribute the collection and its index over disks.

We assume the client arrival rate is a Poisson process. Each client issues a
query and waits for response. For each query, the server performs two opera-
tions: query evaluation and retrieving the corresponding summaries. Since users
typically enter short queries, we experiment with a query set that consists of
1000 short queries, with an average of 2 terms per query that mimic those found
in the query set down loaded from the Web server for searching the 103rd Con-
gressional Record [4]. All experiments measure response time, CPU and disk
utilization, and determine the largest arrival rate at which the system supports
a response t ime under 10 seconds. We chose 10 seconds arbitrarily as our cutoff
point for a reasonable response time.

3.1 Threading
This section examines how the software structure, i.e., number of threads, af-
fects system scMability. Figure 1 illustrates how the average response t ime and

524

QN F P q Q T F CSIZEFPLIDISIq T H
[1000121Obs. I 1 G B / 1 / ~ |Va.ried I

6O

I ![2 threads-+--- ~, 50
I]]4 threads -E~--.

/ I
1 0

0
20 40 60 80 100 120 140 160 180

A v e r a g e Arr iva l R a t e (r e q u e s t s per minute)
(a)

QN [rPQ[QTFCSIZEFPU~ISI ~ TH
i~000|~(O~s. . I ~ GB i 2 ! 4 /Varied I

6O i , i [, , i /
4 thread ~ /

50 8 threads --P-. [
16 t h r e a d s - 8 - - [

40 32 th reads x ~ / / / S i

3O

20 /

0 ~ ' ~ "
O 20 40 60 60 100 120 140 160 180
Average Arrival R a t e (reques ts per minute)

8

rr
g

Q N - ~ P ~ Q T F CSIZEFPI_~ISI~ q TH
1 0 0 0 / 2 | O b s ,]1 G B / 1 1 4] V a r ! e d

60 ' ' ' ~ , ~" ' - ' , ~t
4 thread -e--- ~ ~::'

50 8 threads -+--- [t~;
16 threads -E:]-- # ~f.;
32 threads -.x / ,~: 40

30 / f " :

0 20 40 60 80 100 120 140 160 180
Average Arrive) R a t e (r e q u e s t s per minute)

(b)
QN F P ~ Q T F CSIZEFPUpISIq TII

1 1 0 0 0 | 2 | O b s . I 4 GB 12 . l 4~Varied,I

g

ec
g

~o ~ thread -,-- f i /
, , , , , J t i

50 - 8threads -~-~- ~ ' [
16 threads -m-.- [] /

,o / 32threads 1 ' /

20

10

O
0 20 40 60 80 700 120 140 160 180
Average Arrival R a t e (r e q u e s t s per minute)

(d)

Configuration (a) Configuration (b) Configuration (c) Configuration (d)
A = 120 h -~ 150 ,k = 189 ,k = 150

[=resource TH=21 TH=4 TH=41 TH~-8 TH=S] TH----16 TII----S TH- -16 '
CPU 34.4% 36.2% 72.6% 89.2% 55.1% 56.7% ~/3 3% 85.2%
DISK 92.7% 97.30% 51.1% 62.8% 77.4% 79.4~o 68 0% 79.3%

(e) hardware utilization at some interested data points
Fig. 1. Performance as the number of threads increases

resource utilization changes as the number of threads increases with varying
number of CPUs and disks.

In all the configurations, the average response time improves significantly as
the number of threads increases until either the disk or the CPU is overutilized
(see Figure 1 (a) and (b)). Too few threads limits the system's ability to achieve
its peak performance. For example in configuration (c), using 4 threads only
supports 120 requests per minute for a response time under 10 seconds, while
using 16 threads supports more than 180 requests per minute under the same
hardware configuration. When either the CPU or the disk is a bottleneck, the
system needs fewer threads to reach its peak performance. When CPUs and disks
are well balanced (configuration (c) and (d)), the necessary number of threads
is influenized more by the number of disks than the collection size. In both
configuration (c) and configuration (d), the system achieves its peak performance
using 16 threads. Additional threads do not bring further improvement.

525

3.2 Increasing the col lect ion size
This section examines system scalability and hardware balancing as the collec-
tion size increases from 1 GB to 16 GB. In order to examine different hard-
ware configurations, we consider two disk configurations as the collection size
increases: fixing the number of disks, and adding disks. We vary the number of
CPUs in each disk configuration.

Figure 2 illustrates the average response time and resource utilization when
the collection is distributed over 16 disks which means each disk stores a database
for 1/16 of the collection. Partitioning the collection over 16 disks illustrates
when the system is CPU bound (see Figure 2(c)). Although performance de-
grades as the collection size increases, the degradation is closely related to the
CPU utilization. With 1 CPU where the CPU is overutilized for 1 GB and 60
requests per minute, increasing the collection size from 1 GB to 16 GB decreases
the largest arrival rate at which the system supports a response t ime under
10 seconds by a factor of 10 (see Figure 2(a)). With 4 CPUs where CPUs are
overutilized for 1 GB and 180 requests per minute, the performance degrades
much more gracefully (see Figure 2(b)). Increasing the collection size from 1 GB
to 16 GB only decreases the largest arrival rate for a response t ime under 10
seconds by a factor of 3 for 4 CPUs.

Figure 3 illustrates the average response time and the resource utilization
when the number of disks varies with the collection size and each disk stores a
database for 1 GB of data. The system produces response times better than 1
GB for 2 GB using 1 CPU and 8 GB using 4 CPUs. A single CPU system thus
handles a 2 GB collection faster than a 1 GB collection and a 4 CPU system
handles a 2, 4, or 8 GB collection faster than a 1 GB collection in our configu-
ration. The performance improves because work related to retrieving summaries
is distributed over the disks such that each disk handles less work, relieving the
disk bottleneck. By examining the utilization of CPU and disks in Figure 3(c),
we see that the performance improves until the CPUs are overutilized. In the
example of the single CPU system, the CPU is overutilized for a 4 GB collection.
For a 2 GB collection distributed over 2 disks, the system handles 27.8% more
requests than for a 1 GB collection on 1 disk.

By comparing Figure 2(c) and Figure 3(c), we find that the CPU utilization
is more closely related to the number of disks rather than the collection size.
We also find that adding disks degrades system performance when CPUs and
disks are not well balanced. For example, for a 8 GB collection, parti t ioning over
8 disks using 4 CPUs results in 67.5% CPU utilization (see Figure 3(c)), while
partitioning over 16 disks results in 88.0% CPU utilization (see Figure 2(c)) due
to the additionM overhead to access each disk. In this configuration, a system
with 16 disks performs worse than 8 disks because the CPUs are a bottleneck.

4 C o n c l u s i o n
In this paper, we investigate building a parallel information retrieval server us-
ing a symmetric multiprocessor to improve the system performance. Our results
show that we need more than one thread to fully utilize hardware resources (4 to

526

Q N T P Q Q T F C S I Z E C P U DISK T H
1000 2 Obs . Var ied Var ied 16 16 '

60 J i ' ; ' ' ' /
I? ~B i } I GB

o 50 " i i i4,GB /

i i k G
~= 40 i i : I E~

30 " H , t
o .

20 i! Q: 813
g 10 ~ :I

~ 0 ' ' ' ' J
0 20 40 60 80 100 120 140 160 180

Average Arrival Rate (requests per minute)

(a) C P U = 1

o ~ / -
o 80

!16GB] ~4GB:

40 /8 GB
I-: i " ;

i 3o i i ,/
a. / :.
I 2o i ,: i
n- " 12 G

| .,. .,,...)~ o J

.~ o ~.".::..~-:.~:::..~ =--: - - - _.w-:- ,-~,
20 40 60 80 100 120 140 160 180

Average Arrival Rate (requests per minute)

(b) C P U = 4

S i z e o f C o l l e c t i o n
N u m . Re- (s i ze /16 G B pe r disk)
C P U s s o u r c e 1 G B 2 G B 4 G B 8 G B 16 G B

C P U 96.6% 97.4% 98.1% 98.6% 99.0%
1 D I S K 21.6% 18.4% 14,7% 11.9% 9 . 8 %

C P U 38.9% 49.7% 68.0% 88.0% 93.5%
4 D I S K 34.9% 37.8% 41.1% 42.6% 37.4%

(c) R e s o u r c e u t i l i z a t i o n w h e n ?~ = 120

F i g , 2 , Average re sponse t ime a n d re-
source utilization for a collection dis-
t r i b u t e d over 16 disks

Q N T P Q Q T F CSIZE[C P U]DISK]TH
1000 2 Obs . Var ied Varied~/arie<~ 16

~'= 60 = i ' ' : ' ' ' '; f /
i 1 6 G B [/ 1 G B ; . , [

50 Fi i :] , 2 GB
~ | i . :4GB /]

I-i ! 8 G B ! / / 40 i i

30 i ! l
t J "

2 0 i ~
rr i i : '

10 ! x : , "
L ~, ..-"" . -D I f >~ '..r _=-:.-"
< 0 ' J '

0 20 40 60 80 100 120 140 160 180
Average Arrival Rate (requests per minute)

(a) C P U = 1
60 , = , i~ , , J] , i

=] / 1 G B ' /
so i / /87s

4 0 ' /16 GB/ / / ::"
I-: i i I :
=~ 3o ~ l �9 . - i / ' i .

i / .
o. i ~ I : 20 i ~ ,, : -
nr i i i :

to i /: ,~'4 Gs
.2 .. ' / ..-'" -

< 0 =
20 40 60 80 100 120 140 160 180

Average Arrival Rate (requests p e r m i n u t e)

(b) C P U = 4

S i z e o f C o l l e c t i o n
N u m . Re- (1 G B p e r d isk)
C P U s s o u r c e 1 G B 2 G B 4 G B 8 G B 16 G B

C P U 36.2% 7 5 . 3 % ' 9 4 , 3 % 98 .1% 99 .0%
1 D I S K] 9 7 . 4 % 82 .2% 4 3 . 5 % ' 2 0 . 6 % 9 . 8 ~

C P U 9.0% 19.0% 3 5 . 7 % , 6 7 . 5 % 93 .5%
4 D I S K 97 .4% 82 .9% 6 6 . 7 % ' 5 7 . 1 % 37 .4%

(c) R e s o u r c e u t i l i zu t ion w h e n A = 120

F i g . 3. Average response t i m e a n d re-
source u t i l i za t ion when the number of
disks varies with the size of the collection

16 threads for the configurations we explored). We also show that adding hard-
ware components can improve the performance, but these components must be
well balanced since the IR workload performs significant amounts of both I /O
and CPU processing. Our results show that we can search more data with no loss
in performance in many instances. Although performance eventually degrades
as the collection size increases, the performance degrades very gracefully if we
keep the hardware util ization balanced. Our results also show that system per-
formance for our system is more strongly related to the number of disks rather
than the collection size.

527

Acknowledgment

This material is based on work supported in part by the National Science Foun-
dation, Library of Congress and Department of Commerce under cooperative
agreement number EEC-9209623. Kathryn S. McKinley is supported by an NSF
CAREER award CCR-9624209. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are the authors and do not necessarily
reflect those of the sponsor.

We thank Bruce Croft, Jamie Callan, James Allan, and Chris Small for their
support of this work. We also thank all the developers of InQuery without whose
efforts this work would not have been possible.

References

1. B. Cahoon and K. S. McKinley. Performance evaluation of a distributed architecture
for information retrieval. In Proceedings of the Nineteenth Annual International
A CM SIGIR Conference on Research and Development in Information Retrieval,
pages 110-118, Zurich, Switzerland, August 1996.

2. J. P. Callan, W. B. Croft, and J. Broglio. TREC and TIPSTER experiments with
INQUERY. Information Processing ~ Management, 31(3):327-343, 1995.

3. J. P. Callan, W. B. Croft, and S. M. Harding. The INQUERY retrieval system.
In Proceedings of the 3rd International Conference on Database and Expert System
Applications, Valencia, Spain, September 1992.

4. W. B. Croft, R. Cook, and D. Wilder. Providing government information on the
internet: Experiences with THOMAS. In The Second International Conference on
the Theory and Practice of D~g~tal Libraries, Austin, TX, June 1995.

5. lnQuery, ht tp : / / c iir. cs. umass, edu/inf o/highl ight s. html.

6. Zhihong Lu, Kathryn S. McKinley, and Brendon Cahoon. The hardware/software
balancing act for information retrieval on symmetric multiprocessors. Technical
Report TR98-25, University of Massachusetts, Amherst, 1998.

