
A Simple Protoco l to C o m m u n i c a t e
Channels over Channels

Henk L. Muller and David May

Department of Computer Science, University of Bristol, UK
henkm@cs, bris. ac. uk, dave@cs, bris. ac. uk

Abs t r ac t . In this paper we present the communication protocol that we
use to implement first class channels. Ordinary channels allow data com-
munication (like CSP/Occam); first class channels allow communicating
channel ends over a channel. This enables processes to exchange commu-
nication capabilities, making the communication graph highly flexible.
In this paper we present a simple protocol to communicate channels over
channels, and we show that we can implement this protocol cheaply and
safely. The implementation is going to be embedded in, amongst oth-
ers, ultra mobile computer systems. We envisage that the protocol is so
simple that it can be implemented at hardware level.

1 I n t r o d u c t i o n

The tradit ional approach to communication in concurrent and parallel p rogram-
ming languages is either very flexible, or very restricted. A language like Oc-
cam [1], based on CSP [2], has a static communicat ion graph. Processes are con-
nected by means of channels. Data is t ransported over channels synchronously,
meaning that input and output operations wait for each other before da ta can
be communicated. In contrast, communicat ion in concurrent object oriented lan-
guages is carried out via object identifiers. Once a process obtains an identifier
of another object, it can communicate with that object, and any object can
communicate with that object. Similarly, languages based on the 1r-calculus [3],
use many-to-one communications.

We have recently developed a form of communicat ion tha t lies between the
purely static and very dynamic communicat ion constructs. We enforce commu-
nication over point-to-point channels, just like Occam, but instead of having a
fixed communicat ion graph we allow channels to be passed between processes.
This gives us a high degree of flexibility. A channel can be seen as a communi-
cation capabili ty to or from a process. This is close to the NIL approach [4].

These flexible channels can be extremely useful in many application areas. Al-
lowing channel ends to be passed like ordinary da ta gives us an elegant pa rad igm
to encode the (mobile) software required for wearable computers. Multi-user
games often require communicat ion capabilities to be exchanged between nodes
in the system. A similar type of channels has been successfully used for au-
dio processing [5], and mobile channels appear to be a natural communica t ion
med ium for continuous media.

592

i) Initial state ii) if b is moved iii) if a is moved subsequently

Fig. 1. A system, with two nodes 'D' and 'O', and a channel connecting ports a and b.
(i) the channel is local on 'O'; ii) port b is passed to node 'D', stretching the channel;
iii) port a is transferred to 'D', the channel snaps back.

In all of these applications, one wants to be able to pass around a communi-
cation capabili ty from one part of a system to another. Having one-to-one com-
municat ion channels as opposed to one-to-many communicat ion models (which
many concurrent OO languages offer as their default mechanism) makes it easier
for the p rogrammer to reason about the program behaviour, while it simplifies
and speeds up the implementation. This is especially impor tan t when we are
going to implement these protocols at hardware level.

In this paper we discuss the implementat ion of the mobile channel model. In
Section 2 we first give a brief overview of the high level pa rad igm tha t we use to
model these flexible channels. After that , we discuss the protocols that we have
developed to implement the channels in Section 3. In Section 4 we present some
performance figures of our implementat ion.

2 M o v i n g P o r t s P a r a d i g m

The programming paradigm that we have developed, Icarus, is designed to en-
able the development of mobile distributed software. In this section we give a
brief description of the Icarus programming model, concentrating on the com-
municat ion aspects; for an in-depth discussion of Icarus we refer to a companion
paper [6]. Icarus processes communicate by means of channels. Like CSP and
Occam channels, Icarus channels are point-to-point, and uni-directionM. T h a t
means, at any moment in time, a channel has exactly one process tha t may input
f rom the channel, and one process tha t may output to the channel. We call these
channel ends ports, so each channel has an associated input port and output port.
The two ports that are connected by a channel are called companion ports.

In contrast with CSP and Occam, Icarus ports are first-class. This means
that one can declare a variable of the type "input port of integers", and assign
it a channel end (the type system requires this to be the input-end of an integer
channel). Alternatively one can declare a "channel of input por t of integers",
and communicate a port over this channel. Because an Icarus port can be passed
around between processes, a flexible communicat ion structure can be created.

There are two ways to look at mobile channels and ports. The easiest way to
visualise mobile channels is to view a channel as a rubber pipe connecting two
ports. Wherever the ports are moved, the channel connects them and t ranspor ts
da ta from the input port to the output port when required. The grey line in

593

{ chart ! i n t d ; chart ? i n t c ; 1 Initial ~ / ' ~
p a r { { chart z ; Config-

c ! z ; d ! z ; uration
}

[[{ ?int x ; int b ;

c ? x ; 2 Thepogs / ~ _~ /F~x~
x ? b ; ofzare

} moving

I] { ! i n t y ;
d ? y ;
y ! i ; 3 The p o r t s / ~ ~ x N %

have
} arrived

} in x and y
}

F i g . 2. Example Icarus program. Left: the code. Right: the execution, the processes
before, during and af ter communicat ion over c and d.

Figure l(i) shows the channel between the two ports labelled a and b. Another
way to view channels and ports is to enumerate them. If we assign a unique even
numbers to each channel, say C, then we can define the ports of tha t channel
to have numbers C and C + 1. Data output over port C will always arrive at its
companion port C + 1; regardless the physical locations of the ports.

In order to preserve the point-to-point property of channels, ports are not
copied when assigned or sent over a channel. Instead, they are moved. When
reading a port variable, the variable is not just read, but read-and-destroyed
in one atomic operation. These moving semantics guarantee that at any t ime
each channel connects exactly two ports. A port-variable can thus either con-
tain a port, that is, it is connected via a channel to a companion port , or it is
unconnected, which we can represent by having no value in the port .

The syntax of Icarus allow us to declare an output port of something by
using an exclamation mark: ! T is the type of a port over which values of type
T can be output. The type ?T denotes the ports over which values of T can be
input. So the type ! ? i n t is the type of port over which one can output a port
over which one can input an integer.

Icarus has output (!) and input (?) operators, and a select s ta tement to allow
a choice between multiple possible inputs. Icarus communicat ion is synchronous,
which, as is shown later in this paper, simplifies the implementat ion dramatical ly.
The example program in Figure 2 creates three processes. Process 1 sends an
input port to process 2 and an output por t to process 3. This establishes a
channel between processes 2 and 3, over which they can exchange data .

3 The Protoco l for Moving Ports

The protocol used to communicate ports over channels is simple. We present the
protocol bo t t om up: we start with the basic communicat ion of simple values, then

594

Port index Ill~i] Companion port index[1132[Remote Address_ Port-state[iDLE ...M~

IDLE ...

Fig. 3. Part of the port data structure, with two companion ports.

we discuss sending ports itself, and we finally consider the difficult cases such
as sending two companion ports simultaneously. We assume that the protocol is
implemented on top of a reliable in-order packet delivery mechanism.

3.1 Communicating Single Values

The port da ta structure consists of an integer that denotes the index of the
companion port, an optional field to denote the remote address of the companion
port (not used for a port with a local companion), a field that gives the state
of the port, and some additional fields for storing process identifications. Two
companion ports are shown ill Figure 3.

Communicating single values is implemented conventionally, using the same
algorithms as used in, for example, the Transputer family [7]. The channel can be
in one of three states, IDLE~ INPUTTING and OUTPUTTING. This uniquely defines
the state of both inputting and output t ing processes.

The IDLE state denotes that no process wishes to communicate over the
channel. The INPUTTING state denotes that a process has stopped for input and
is waiting for communication, but that no process is ready for output t ing yet.
Conversely, the OUTPUTTING state denotes that a process is ready for output
but that no process is ready for input. There is no state for two processes being
ready for input and output, as that state is resolved immediately when the second
process performs its input /output operation.

The state of a channel is represented as the state of its two ports. It is
sufficient to store the state INPUTTING on the output port, and to store the
s t a t e OUTPUTTING on the input port. This ensures that a check of the local port
suffices to determine the state of the channel.

If we want to support a select-operation, we will need an extra state, SELECT-
ING, which indicates that a process is willing to input. Upon communication the
selecting process will perform some extra work to clean other ports which have
been placed in the state SELECTING.

3.2 Communicating Simple Values Off-Node

Off-node communication is synchronous, but has been optimised to hide latency
as much as possible. A process that can output data will immediately send the
data on the underlying network, and then wait for a signal that the da ta has been
consumed before continuing. Note that the process stops after outputt ing, until
the da ta has been input; this is essential when implementing the full port-moving
protocol.

595

Because the port-s tate of a remote companion port is not directly accessible,
a port -s ta te is stored at both nodes. Ports with a remote companion can be in
the states REMOTE_IDLE, REMOTEANPUTTING~ REMOTE_OUTPUTTING and RE-
MOTE-READY. The inputting port can be REMOTE.IDLE (no process willing to in-
put at this moment) , REMOTE_INPUTTING (a process is willing to input and wait-
ing) or REMOTE-READY (no process is willing to input, but da ta has been sent
and is waiting to be input). The output t ing port can be in the state REMOTE..IDLE
(no process is willing to output at this moment) or REMOTE_OUTPUTTING (a
process has output da ta and is waiting for the da ta to be input).

When implementing a select-operation, a port may get into a state RE-
MOTE_SELECTING to denote that a process is waiting for input f rom more than
one source (note tha t our select-operation only allows selective input, we do not
support a completely general select-operation [8])

3.3 Communicating Ports Off-Node

Locally, within a node, a port can be simply an index in an array. Within a
node, ports can be freely moved around from one process to another s imply by
communicat ing this index value. We discuss transfers of ports to another node
in four steps:

1. Transfer of a port f rom a source node to a destination node, where the
companion port is on the source node (channel stretches).

2. Transfer of a port from a source node to a destination node, where the
companion port is on a third node.

3. Transfer of a port f rom a source node to a destination node, where the
companion port is on the destination node (channel snaps back)

4. Difficult cases (simultaneous transfers of two companion ports)

1. T r a n s f e r o f a p o r t f r o m a s o u r c e n o d e t o a d e s t i n a t i o n n o d e , w h e r e
t h e c o m p a n i o n p o r t is o n t h e s o u r c e n o d e . In this case the companion
port is local, and stays behind. According to Section 3.1, the port tha t will be
sent, must be in the state IDLE, INPUTTING, or OUTPUTTING. Because ports are
associated with exactly one process, we can be sure that the port tha t is going
to be sent is not active. Tha t is, no process can be inputt ing or output t ing on
the port which is being sent: if a process was inputt ing or output t ing on this
port , then the process cannot send the port (it could only a t t empt to send the
port over itself; the type system prevents this from happening).

Because the port being sent is not active, it is sufficient to send some identi-
fication of the companion port to the destination node. The identification tha t
we send consists of a local index number, and tile node address of the source
(for example an IP-address and IP port-number) . This tuple (local index, node
address) is a globally unique identification of the port.

Upon receiving the identification, a new port is allocated, and the companion
port index and node address are stored in this port. The port-s ta te is initialised
to REMOTE_IDLE, for the port was inactive. The second step is to inform the

596

"l ~ ~ L E] ~ 1. Send companion port-ID
~ . ~ .'~.2 ~ ~ (137.222.102.50,2314,13)

?

. " ~ , 2. Send ID of allocated port
~ , ~ [~ ~ (137.222.103.28,1127,34)

13 I 34 28 REMOTE IDLE ~-, ,~

28 REMOTE_IDLE [~ , ~ ~ (34) z - - - ' - ~ ~ - ~ i

Fig. 4. Steps to send a port to a remote node. Grey arrows are channels.

companion node of the newly created port index, and the companion port ' s
state is set to REMOTE_IDLE, I~EMOTE_INPUTTING, or REMOTE_OUTPUTTING.
After the companion port is updated, step three is to delete the original port.
Even though the port send was inactive, it was possible that at most one message
was waiting on it, in that case the data is forwarded in order to preserve the
invariant that the data has been sent to the remote node. Finally, in the fourth
step an acknowledgement is sent to the destination node, signalling that the
companion port is ready.

This four step process is summarised in Figure 4. Between steps 1 and 2 is
a transitional period when the companion port is not connected to anything.
For this reason, the companion port-state is set to GONE in step 1. Any I /O
operation between steps 1 and 2 will wait until this transient state disappears.

2. T r a n s f e r o f a p o r t f r o m a s o u r c e n o d e t o a d e s t i n a t i o n n o d e , w h e r e
t h e c o m p a n i o n p o r t is o n a different, thi rd~ n o d e . This case is slightly
more difficult, and we need a generalised version of the previous protocol. This
generalised protocol has four steps, outlined in Figure 5. In step 1 the global
identification of the companion port is sent from 'S' to 'D'. In step 2 the newly
allocated port-index is sent from the destination node 'D' to the companion node
'C'. This will allow the companion port to be updated. Step 3 will acknowledge
to 'S' that the port has been transferred, allowing the source node to delete the
original port. Finally step 4 is an acknowledgement to 'D' signalling that the
port is ready for use.

Performing these four steps in this order will ensure that any message that
might have been sent to the source node is collected and forwarded to the des-
t ination node. In the worst case, a message might be output on the companion
port, just after the source node has initiated the transfer. This message will
be delivered to the source node while the port is in state GONE. The da ta will
be kept here until step 3 of the protocol, whereupon it is transferred to the
destination node.

597

~ 1 Send companion ID . . ~ '
urce Node ~) 4 Acknowledge , (Destination Node b

- uelete port of NeW port-~

Fig. 5. Steps to send a port in a system involving three nodes.

Note that the case with two nodes discussed in the previous section is a
special case of this four step protocol. If the companion port resides on the
source node, then step 3 is a local operation.

3. T r a n s f e r o f a p o r t f r o m a s o u r c e n o d e to a d e s t i n a t i o n n o d e , w h e r e
t h e c o m p a n i o n p o r t is o n t h e d e s t i n a t i o n n o d e . Because the port is
being sent to the node where the companion resides, we must ensure tha t bo th
companion ports are in a ' local ' state, allowing da ta transfer to be opt imised for
local transport .

We use the same protocol as before. Because the destination node and the
companion node are now one and the same, step 2, informing the companion
node of its new status, is now a local activity. We still need to execute steps 3
and 4, telling the source node that the port can be deleted, and acknowledging
the completion. These steps take care of the situation in which the por t sent was
originally in the s tate I~EMOTE_READY. The companion had sent da ta to the
input-port , and the da ta was waiting to be picked up. Before the port is deleted,
we forward the da ta to the destination node. Both companions are now on the
destination node, so we change the input port -s ta te to OUTPUTTING, and keep
the da ta in the output t ing process until a process is ready to input it. The da ta
can be safely kept in the output t ing process because it had not been allowed to
proceed.

4. Di f f i cu l t cases . There are two difficult cases worth discussing: two compan-
ion ports that are sent at the same t ime (to the same or different dest ination
nodes); and the case where a port is transferring a port, which is in turn trans-
ferring a port (which in turn might be transferring a port).

When two ports are transferred simultaneously, the protocols moving the two
ports might interfere with each other. The source of the interference is step 2,
where the companion node is updated to reflect the new location of the por t
transferred. We overcome this problem by checking during step 2 whether the
companion port is actually being moved, which is indicated by the por t -s ta te
GONE. If this is the case, then the message is forwarded to the companion ' s
destination node.

If a companion port is found in the state GONE, then the other port must
find its companion GONE (because of the message ordering), and bo th nodes will
forward the message of step 2. Eventually, both newly created ports will have a
reference to each others ' location, and both old ports are deleted. Note tha t if

598

Fig. 6. Ports over ports over ports.

two companion ports are sent simultaneously, then both ports must have been
IDLE, and no data will be sent until both have arrived at their destinations.

The most difficult situation is the case where a port is sent, and this port is
actually a port of ports, carrying a port. In Figure 6 we have sketched a situation
with 4 nodes (A, B, C and D) and 6 ports (a, b, c, d, e and f) . The ports are
linked up as denoted by the grey lines. Outputt ing port d over e is a normal
output operation as discussed before. Similarly, outputt ing port b over c to d is
a normal operation.

If the transfers of b and d happen simultaneously, then b is actually making
a double hop, from node B via node C to node D. Indeed, there may be an
arbitrarily long finite list of ports to be moved, only restricted by the number
of '? ' in the port type definition (the typing system guarantees it to be finite).
This forwarding causes a serious complication in the protocol (around 20% of
the code), and we are considering whether it is worthwhile to prohibit this.

3.4 Security

The protocol described above is not secure. Most notably, an attacker can forge
a message for step 2 of the protocol, and deliver it to a node, in order to obtain
a port in the process. The solution is to extend our protocol with an extra step.
When executing step 1 of the process, we have to send a clearance message to the
companion port, informing it that a move is imminent. The companion node will
only execute step 2 of the protocol when the source node has sent this clearance.
This provides security against unknown processes taking channel ends, but on
the assumption that the underlying network enforces a unique naming scheme,
and secure delivery of messages.

3.5 D i s c u s s i o n

The protocol has been optimised so that the frequent operations, such as send-
ing ordinary data or ports, have high performance. There are communication
patterns which will perform badly. The worst case is a program where a process
outputs a large array over a port, while there is no process willing to input this
data. If the input-port is now sent from one process to the next, then the da ta
is shipped with it. If the input port were to be sent many times, we would waste
bandwidth and increase latency. We could optimise this case by not sending da ta
until required, but this would seriously impair performance in the more common
case, when data is communicated between two remote nodes (incurring double
latency on each transferral).

599

Yoyo: send a port up and down between two nodes

Diabolo: send both ports up and down

Bouncing between
Bristol-a Bristol-a
Bristol-a Bristol-b

~ode a ode b

.

Yo-yo Diabolo
7 . 7 0 # s 16 ps
4.7 m s 9.9 m s

Bristol-a Amsterdam 322 m s 660 m s

Fig. 7. The two test programs that we measured, with round trip times.

4 R e s u l t s

The protocol has been implemented in C, to implement Icarus on a network of
workstations. The implementat ion of the protocol takes less than 1000 lines of C,
underlining its simplicity. We use UDP (User Data Protocol) for the underlying
network, with an extra layer to guarantee reliable in-order delivery.

We have tested the protocol with many different applications. A class of
students has writ ten multi user games in Icarus. To convince the reader tha t
our implementat ion works over the Internet, we show timings of the two test
programs displayed in Figure 7. The first test program, Yo-yo, keeps one port
at a fixed node, and sends the companion por t forwards and backwards to a
process on a second node. In this program the channel must stretch and snap
back every time. The second test program, Diabolo, stretches the protocol with
some more demanding communication. Two pMrs of processes are running on
two nodes, each pair of processes sends one of two companion forwards and
backwards between two nodes.

We have measured three configurations: one where all processes are run-
ning within the same node (which measures communicat ions inside the run- t ime
support only), a configuration where we run the processes on two machines on
the same LAN, and a configuration where we run the processes on two distant
machines. The performance is linearly related to the average latency between
the nodes involved, and to the number of messages that is needed for a round
trip. This is clearly shown in the t imings of Yo-yo versus Diabolo for the three
configurations.

5 C o n c l u s i o n s

In this paper we presented a simple protocol that allows us to t reat communica-
tion channels as first class objects. The programming paradigm allows processes
to communicate over point-to-point channels. Values communicated can either

600

be simple values (like integers or arrays of integers), or ports (ends of channels).
Because the paradigm allows a synchronous implementation, we have been able
to produce a simple implementation. Whenever a port is transferred, the port is
known to be idle (because ports are point to point and synchronous), so we do
not have to transfer any state around.

We have developed a four step protocol to move a communication port from
one node to another. Step one carries the port identifier, creating a new port on
the destination node. Step two informs the companion port of its new companion.
Step three informs the source that the original port is to be deleted. Step four
allows the newly created port to start communication. These steps may be local
or remote, depending on the relative positions of the source, destination, and
companion nodes. If the two connected ports end up in the same node, the
channel snaps back to within the node, and the implementation switches to a
highly efficient local communication protocol.

The applications of this protocol lie in many areas: multi user games (where
players receive channels that allow them to communicate with other players),
continuous media switchboards (where a channel carrying, for example, video
signals is handed out to two terminals), and wearable computing (establish-
ing communication channels between parts of a changing environment). We are
currently integrating this protocol in a wearable computer system, and its ap-
plications in continuous media.

R e f e r e n c e s

1. Inmos Ltd. Occam-2 Reference Manual. Prentice Hall, 1988.
2. C. A. R. Hoare. Communicating Sequential Processes. Communications of the

A CM, 21(8):666-677, August 1978.
3. R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, I. Information

and Computation, 100(1):1-40, Sept. 1992.
4. R. Strom and S. Yemini. The NIL Distributed Systems Programming Language: A

Status Report. SIGPLAN notices, 20(5):36-44, May 1985.
5. R. Kirk and A. Hunt. MIDAS-MILAN An Open Distributed Processing System for

Audio Signal Processing. Journal Audio Engineering Society, 44(3):119-129, Mar.
1996.

6. D. May and H. L. Muller. Icarus language definition. Technical report, Department
of Computer Science, University of Bristol, January 1997.

7. M. D. May, P. W. Thompson, and P. H. Welch, editors. Networks, Routers 8J
Transputers. IOS Press, 1993.

8. G. N. Buckley and A. Silberschatz. Art Effective Implementation for the Generalised
Input-Output Construct of CSP. A CM Transactions on Programming Languages
and Systems, pp 224, Apr. 1983.

