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Abs t r ac t .  In this paper we present the communication protocol that we 
use to implement first class channels. Ordinary channels allow data com- 
munication (like CSP/Occam); first class channels allow communicating 
channel ends over a channel. This enables processes to exchange commu- 
nication capabilities, making the communication graph highly flexible. 
In this paper we present a simple protocol to communicate channels over 
channels, and we show that we can implement this protocol cheaply and 
safely. The implementation is going to be embedded in, amongst oth- 
ers, ultra mobile computer systems. We envisage that the protocol is so 
simple that it can be implemented at hardware level. 

1 I n t r o d u c t i o n  

The tradit ional  approach to communication in concurrent and parallel p rogram-  
ming languages is either very flexible, or very restricted. A language like Oc- 
cam [1], based on CSP [2], has a static communicat ion graph. Processes are con- 
nected by means of channels. Data  is t ransported over channels synchronously, 
meaning that  input and output  operations wait for each other before da ta  can 
be communicated.  In contrast, communicat ion in concurrent object oriented lan- 
guages is carried out via object identifiers. Once a process obtains an identifier 
of another  object, it can communicate  with that  object, and any object can 
communicate  with that  object. Similarly, languages based on the 1r-calculus [3], 
use many-to-one communications.  

We have recently developed a form of communicat ion tha t  lies between the 
purely static and very dynamic communicat ion constructs. We enforce commu-  
nication over point-to-point  channels, just  like Occam, but instead of having a 
fixed communicat ion graph we allow channels to be passed between processes. 
This gives us a high degree of flexibility. A channel can be seen as a communi-  
cation capabili ty to or from a process. This is close to the NIL approach [4]. 

These flexible channels can be extremely useful in many  application areas. Al- 
lowing channel ends to be passed like ordinary da ta  gives us an elegant pa rad igm 
to encode the (mobile) software required for wearable computers.  Multi-user 
games often require communicat ion capabilities to be exchanged between nodes 
in the system. A similar type of channels has been successfully used for au- 
dio processing [5], and mobile channels appear  to be a natural  communica t ion  
med ium for continuous media. 
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i) Initial state ii) if b is moved iii) if a is moved subsequently 

Fig. 1. A system, with two nodes 'D'  and 'O', and a channel connecting ports a and b. 
(i) the channel is local on 'O'; ii) port b is passed to node 'D', stretching the channel; 
iii) port a is transferred to 'D', the channel snaps back. 

In all of these applications, one wants to be able to pass around a communi-  
cation capabili ty from one part  of a system to another. Having one-to-one com- 
municat ion channels as opposed to one-to-many communicat ion models (which 
many  concurrent OO languages offer as their default mechanism) makes it easier 
for the p rogrammer  to reason about  the program behaviour, while it simplifies 
and speeds up the implementation.  This is especially impor tan t  when we are 
going to implement  these protocols at hardware level. 

In this paper we discuss the implementat ion of the mobile channel model. In 
Section 2 we first give a brief overview of the high level pa rad igm tha t  we use to 
model these flexible channels. After that ,  we discuss the protocols that  we have 
developed to implement  the channels in Section 3. In Section 4 we present some 
performance figures of our implementat ion.  

2 M o v i n g  P o r t s  P a r a d i g m  

The programming paradigm that  we have developed, Icarus, is designed to en- 
able the development of mobile distributed software. In this section we give a 
brief description of the Icarus programming model, concentrating on the com- 
municat ion aspects; for an in-depth discussion of Icarus we refer to a companion 
paper  [6]. Icarus processes communicate  by means of channels. Like CSP and 
Occam channels, Icarus channels are point-to-point,  and uni-directionM. T h a t  
means,  at any moment  in time, a channel has exactly one process tha t  may  input  
f rom the channel, and one process tha t  may output  to the channel. We call these 
channel ends ports, so each channel has an associated input port and output port. 
The two ports  that  are connected by a channel are called companion ports.  

In contrast  with CSP and Occam, Icarus ports are first-class. This means 
that  one can declare a variable of the type "input port  of integers", and assign 
it a channel end (the type system requires this to be the input-end of an integer 
channel). Alternatively one can declare a "channel of input  por t  of integers", 
and communicate  a port  over this channel. Because an Icarus port  can be passed 
around between processes, a flexible communicat ion structure can be created. 

There are two ways to look at mobile channels and ports.  The easiest way to 
visualise mobile channels is to view a channel as a rubber  pipe connecting two 
ports.  Wherever the ports are moved, the channel connects them and t ranspor ts  
da ta  from the input port  to the output  port  when required. The  grey line in 
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F i g .  2. Example  Icarus program. Left: the  code. Right:  the execution, the  processes 
before, during and af ter  communicat ion  over c and d. 

Figure l(i) shows the channel between the two ports labelled a and b. Another  
way to view channels and ports is to enumerate them. If we assign a unique even 
numbers to each channel, say C, then we can define the ports of tha t  channel 
to have numbers C and C +  1. Data  output  over port  C will always arrive at its 
companion port  C + 1; regardless the physical locations of the ports. 

In order to preserve the point-to-point property of channels, ports  are not 
copied when assigned or sent over a channel. Instead, they are moved. When 
reading a port  variable, the variable is not just  read, but  read-and-destroyed 
in one atomic operation. These moving semantics guarantee that  at any t ime 
each channel connects exactly two ports. A port-variable can thus either con- 
tain a port,  that  is, it is connected via a channel to a companion port ,  or it is 
unconnected, which we can represent by having no value in the port .  

The  syntax of Icarus allow us to declare an output  port  of something by 
using an exclamation mark:  ! T is the type of a port  over which values of type 
T can be output.  The type ?T denotes the ports over which values of T can be 
input. So the type ! ? i n t  is the type of port  over which one can output  a port  
over which one can input an integer. 

Icarus has output  (!)  and input (?) operators,  and a select s ta tement  to allow 
a choice between multiple possible inputs. Icarus communicat ion is synchronous, 
which, as is shown later in this paper, simplifies the implementat ion dramatical ly.  
The example program in Figure 2 creates three processes. Process 1 sends an 
input port  to process 2 and an output  por t  to process 3. This  establishes a 
channel between processes 2 and 3, over which they can exchange data .  

3 The  Protoco l  for Moving Ports  

The protocol used to communicate  ports  over channels is simple. We present the 
protocol bo t t om up: we start  with the basic communicat ion of simple values, then 
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Fig. 3. Part of the port data structure, with two companion ports. 

we discuss sending ports itself, and we finally consider the difficult cases such 
as sending two companion ports simultaneously. We assume that  the protocol is 
implemented on top of a reliable in-order packet delivery mechanism. 

3.1 Communicating Single Values 

The port da ta  structure consists of an integer that  denotes the index of the 
companion port, an optional field to denote the remote address of the companion 
port  (not used for a port with a local companion), a field that  gives the state 
of the port,  and some additional fields for storing process identifications. Two 
companion ports are shown ill Figure 3. 

Communicating single values is implemented conventionally, using the same 
algorithms as used in, for example, the Transputer family [7]. The channel can be 
in one of three states, IDLE~ INPUTTING and OUTPUTTING. This uniquely defines 
the state of both inputting and output t ing processes. 

The IDLE state denotes that  no process wishes to communicate over the 
channel. The INPUTTING state denotes that  a process has stopped for input and 
is waiting for communication, but that no process is ready for output t ing yet. 
Conversely, the OUTPUTTING state denotes that a process is ready for output  
but  that  no process is ready for input. There is no state for two processes being 
ready for input and output,  as that  state is resolved immediately when the second 
process performs its input /output  operation. 

The state of a channel is represented as the state of its two ports. It is 
sufficient to store the state INPUTTING on the output  port, and to store the 
s t a t e  OUTPUTTING on the input port. This ensures that  a check of the local port  
suffices to determine the state of the channel. 

If we want to support a select-operation, we will need an extra state, SELECT- 
ING, which indicates that  a process is willing to input. Upon communication the 
selecting process will perform some extra work to clean other ports which have 
been placed in the state SELECTING. 

3.2 Communicating Simple Values Off-Node 

Off-node communication is synchronous, but has been optimised to hide latency 
as much as possible. A process that can output  data  will immediately send the 
data  on the underlying network, and then wait for a signal that  the da ta  has been 
consumed before continuing. Note that  the process stops after outputt ing,  until 
the da ta  has been input; this is essential when implementing the full port-moving 
protocol. 
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Because the port-s tate  of a remote companion port  is not directly accessible, 
a port -s ta te  is stored at both nodes. Ports with a remote companion can be in 
the states REMOTE_IDLE, REMOTEANPUTTING~ REMOTE_OUTPUTTING and RE- 
MOTE-READY. The inputting port can be REMOTE.IDLE (no process willing to in- 
put  at this moment) ,  REMOTE_INPUTTING (a process is willing to input and wait- 
ing) or REMOTE-READY (no process is willing to input, but da ta  has been sent 
and is waiting to be input). The output t ing port  can be in the state REMOTE..IDLE 
(no process is willing to output  at this moment)  or REMOTE_OUTPUTTING (a 
process has output  da ta  and is waiting for the da ta  to be input).  

When implementing a select-operation, a port may  get into a state RE- 
MOTE_SELECTING to denote that  a process is waiting for input f rom more than  
one source (note tha t  our select-operation only allows selective input,  we do not 
support  a completely general select-operation [8]) 

3.3 Communicating Ports Off-Node 

Locally, within a node, a port  can be simply an index in an array. Within a 
node, ports can be freely moved around from one process to another s imply by 
communicat ing this index value. We discuss transfers of ports  to another node 
in four steps: 

1. Transfer of a port  f rom a source node to a destination node, where the 
companion port  is on the source node (channel stretches). 

2. Transfer of a port from a source node to a destination node, where the 
companion port  is on a third node. 

3. Transfer of a port  f rom a source node to a destination node, where the 
companion port  is on the destination node (channel snaps back) 

4. Difficult cases (simultaneous transfers of two companion ports) 

1. T r a n s f e r  o f  a p o r t  f r o m  a s o u r c e  n o d e  t o  a d e s t i n a t i o n  n o d e ,  w h e r e  
t h e  c o m p a n i o n  p o r t  is o n  t h e  s o u r c e  n o d e .  In this case the companion 
port  is local, and stays behind. According to Section 3.1, the port  tha t  will be 
sent, must  be in the state IDLE, INPUTTING, or OUTPUTTING. Because ports  are 
associated with exactly one process, we can be sure that  the port  tha t  is going 
to be sent is not active. Tha t  is, no process can be inputt ing or output t ing  on 
the port  which is being sent: if a process was inputt ing or output t ing on this 
port ,  then the process cannot send the port  (it could only a t t empt  to send the 
port  over itself; the type system prevents this from happening).  

Because the port  being sent is not active, it is sufficient to send some identi- 
fication of the companion port  to the destination node. The identification tha t  
we send consists of a local index number,  and tile node address of the source 
(for example an IP-address and IP port-number) .  This tuple (local index, node 
address) is a globally unique identification of the port. 

Upon receiving the identification, a new port  is allocated, and the companion 
port  index and node address are stored in this port. The port-s ta te  is initialised 
to REMOTE_IDLE, for the port  was inactive. The second step is to inform the 
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Fig. 4. Steps to send a port to a remote node. Grey arrows are channels. 

companion node of the newly created port index, and the companion port ' s  
state is set to REMOTE_IDLE, I~EMOTE_INPUTTING, or REMOTE_OUTPUTTING. 
After the companion port is updated, step three is to delete the original port.  
Even though the port send was inactive, it was possible that at most one message 
was waiting on it, in that  case the data  is forwarded in order to preserve the 
invariant that  the data  has been sent to the remote node. Finally, in the fourth 
step an acknowledgement is sent to the destination node, signalling that  the 
companion port is ready. 

This four step process is summarised in Figure 4. Between steps 1 and 2 is 
a transitional period when the companion port is not connected to anything. 
For this reason, the companion port-state is set to GONE in step 1. Any I /O  
operation between steps 1 and 2 will wait until this transient state disappears. 

2. T r a n s f e r  o f  a p o r t  f r o m  a s o u r c e  n o d e  t o  a d e s t i n a t i o n  n o d e ,  w h e r e  
t h e  c o m p a n i o n  p o r t  is o n  a different,  thi rd~ n o d e .  This case is slightly 
more difficult, and we need a generalised version of the previous protocol. This 
generalised protocol has four steps, outlined in Figure 5. In step 1 the global 
identification of the companion port is sent from 'S' to 'D'. In step 2 the newly 
allocated port-index is sent from the destination node 'D' to the companion node 
'C'. This will allow the companion port  to be updated. Step 3 will acknowledge 
to 'S' that  the port has been transferred, allowing the source node to delete the 
original port. Finally step 4 is an acknowledgement to 'D' signalling that  the 
port  is ready for use. 

Performing these four steps in this order will ensure that  any message that  
might have been sent to the source node is collected and forwarded to the des- 
t ination node. In the worst case, a message might be output  on the companion 
port,  just after the source node has initiated the transfer. This message will 
be delivered to the source node while the port is in state GONE. The da ta  will 
be kept here until step 3 of the protocol, whereupon it is transferred to the 
destination node. 
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Fig. 5. Steps to send a port in a system involving three nodes. 

Note that  the case with two nodes discussed in the previous section is a 
special case of this four step protocol. If  the companion port  resides on the 
source node, then step 3 is a local operation. 

3. T r a n s f e r  o f  a p o r t  f r o m  a s o u r c e  n o d e  to  a d e s t i n a t i o n  n o d e ,  w h e r e  
t h e  c o m p a n i o n  p o r t  is o n  t h e  d e s t i n a t i o n  n o d e .  Because the port  is 
being sent to the node where the companion resides, we must  ensure tha t  bo th  
companion ports  are in a ' local '  state, allowing da ta  transfer to be opt imised for 
local transport .  

We use the same protocol as before. Because the destination node and the 
companion node are now one and the same, step 2, informing the companion 
node of its new status, is now a local activity. We still need to execute steps 3 
and 4, telling the source node that  the port can be deleted, and acknowledging 
the completion. These steps take care of the situation in which the por t  sent was 
originally in the s tate  I~EMOTE_READY. The companion had sent da ta  to the 
input-port ,  and the da ta  was waiting to be picked up. Before the port  is deleted, 
we forward the da ta  to the destination node. Both companions are now on the 
destination node, so we change the input port -s ta te  to OUTPUTTING, and keep 
the da ta  in the output t ing process until a process is ready to input it. The  da ta  
can be safely kept in the output t ing process because it had not been allowed to 
proceed. 

4. Di f f i cu l t  cases .  There are two difficult cases worth discussing: two compan-  
ion ports that  are sent at the same t ime (to the same or different dest ination 
nodes); and the case where a port is transferring a port,  which is in turn trans- 
ferring a port (which in turn might be transferring a port).  

When two ports are transferred simultaneously, the protocols moving the two 
ports  might  interfere with each other. The source of the interference is step 2, 
where the companion node is updated to reflect the new location of the por t  
transferred. We overcome this problem by checking during step 2 whether the 
companion port  is actually being moved, which is indicated by the por t -s ta te  
GONE. If  this is the case, then the message is forwarded to the companion ' s  
destination node. 

If  a companion port  is found in the state GONE, then the other port  must  
find its companion GONE (because of the message ordering), and bo th  nodes will 
forward the message of step 2. Eventually, both  newly created ports  will have a 
reference to each others '  location, and both old ports are deleted. Note tha t  if 
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Fig. 6. Ports over ports over ports. 

two companion ports are sent simultaneously, then both ports must have been 
IDLE, and no data  will be sent until both have arrived at their destinations. 

The most difficult situation is the case where a port is sent, and this port  is 
actually a port of ports, carrying a port. In Figure 6 we have sketched a situation 
with 4 nodes (A, B, C and D) and 6 ports (a, b, c, d, e and f) .  The ports are 
linked up as denoted by the grey lines. Outputt ing port  d over e is a normal 
output  operation as discussed before. Similarly, outputt ing port  b over c to d is 
a normal operation. 

If the transfers of b and d happen simultaneously, then b is actually making 
a double hop, from node B via node C to node D. Indeed, there may be an 
arbitrarily long finite list of ports to be moved, only restricted by the number 
of '? '  in the port type definition (the typing system guarantees it to be finite). 
This forwarding causes a serious complication in the protocol (around 20% of 
the code), and we are considering whether it is worthwhile to prohibit this. 

3.4 Security 

The protocol described above is not secure. Most notably, an attacker can forge 
a message for step 2 of the protocol, and deliver it to a node, in order to obtain 
a port in the process. The solution is to extend our protocol with an extra step. 
When executing step 1 of the process, we have to send a clearance message to the 
companion port, informing it that  a move is imminent. The companion node will 
only execute step 2 of the protocol when the source node has sent this clearance. 
This provides security against unknown processes taking channel ends, but  on 
the assumption that  the underlying network enforces a unique naming scheme, 
and secure delivery of messages. 

3.5 D i s c u s s i o n  

The protocol has been optimised so that  the frequent operations, such as send- 
ing ordinary data  or ports, have high performance. There are communication 
patterns which will perform badly. The worst case is a program where a process 
outputs a large array over a port, while there is no process willing to input this 
data. If the input-port  is now sent from one process to the next, then the da ta  
is shipped with it. If the input port were to be sent many times, we would waste 
bandwidth and increase latency. We could optimise this case by not sending da ta  
until required, but this would seriously impair performance in the more common 
case, when data  is communicated between two remote nodes (incurring double 
latency on each transferral). 
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Yoyo: send a port up and down between two nodes 

Diabolo: send both ports up and down 

Bouncing between 
Bristol-a Bristol-a 
Bristol-a Bristol-b 

~ode a ode b 

. . . . . . . . . . . . . . . . .  . . . . . . . . . . . .  

Yo-yo Diabolo 
7 . 7 0  # s  16 ps 
4.7 m s  9.9 m s  

Bristol-a Amsterdam 322 m s  660 m s  

Fig. 7. The two test programs that we measured, with round trip times. 

4 R e s u l t s  

The protocol has been implemented in C, to implement  Icarus on a network of 
workstations. The implementat ion of the protocol takes less than 1000 lines of C, 
underlining its simplicity. We use UDP (User Data  Protocol) for the underlying 
network, with an extra layer to guarantee reliable in-order delivery. 

We have tested the protocol with many  different applications. A class of 
students has writ ten multi  user games in Icarus. To convince the reader tha t  
our implementat ion works over the Internet, we show timings of the two test 
programs displayed in Figure 7. The first test program, Yo-yo, keeps one port  
at a fixed node, and sends the companion por t  forwards and backwards to a 
process on a second node. In this program the channel must  stretch and snap 
back every time. The second test program, Diabolo, stretches the protocol with 
some more demanding communication. Two pMrs of processes are running on 
two nodes, each pair of processes sends one of two companion forwards and 
backwards between two nodes. 

We have measured three configurations: one where all processes are run- 
ning within the same node (which measures communicat ions inside the run- t ime 
support  only), a configuration where we run the processes on two machines on 
the same LAN, and a configuration where we run the processes on two distant  
machines. The performance is linearly related to the average latency between 
the nodes involved, and to the number of messages that  is needed for a round 
trip. This is clearly shown in the t imings of Yo-yo versus Diabolo for the three 
configurations. 

5 C o n c l u s i o n s  

In this paper  we presented a simple protocol that  allows us to t reat  communica-  
tion channels as first class objects. The programming paradigm allows processes 
to communicate  over point-to-point channels. Values communicated  can either 
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be simple values (like integers or arrays of integers), or ports (ends of channels). 
Because the paradigm allows a synchronous implementation, we have been able 
to produce a simple implementation. Whenever a port  is transferred, the port  is 
known to be idle (because ports are point to point and synchronous), so we do 
not have to transfer any state around. 

We have developed a four step protocol to move a communication port  from 
one node to another. Step one carries the port  identifier, creating a new port on 
the destination node. Step two informs the companion port  of its new companion. 
Step three informs the source that the original port  is to be deleted. Step four 
allows the newly created port  to start  communication. These steps may be local 
or remote, depending on the relative positions of the source, destination, and 
companion nodes. If the two connected ports end up in the same node, the 
channel snaps back to within the node, and the implementation switches to a 
highly efficient local communication protocol. 

The applications of this protocol lie in many areas: multi  user games (where 
players receive channels that allow them to communicate with other players), 
continuous media switchboards (where a channel carrying, for example, video 
signals is handed out to two terminals), and wearable computing (establish- 
ing communication channels between parts of a changing environment).  We are 
currently integrating this protocol in a wearable computer  system, and its ap- 
plications in continuous media. 
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