
OpenMP and HPF: Integrating Two Paradigms*

Barbara Chapman 1 and Piyush Mehrotra 2

1 VCPC, University of Vienna, Vienna, Austria.
2 ICASE, MS 403, NASA Langley Research Center, Hampton VA 23681.

barbara~vcpc .univie . ac. a t , pra@icase, edu

Abs t r ac t . High Performance Fortran is a portable, high-level extension
of Fortran for creating data parallel applications on non-uniform memory
access machines. Recently, a set of language extensions to Fortran and C
based upon a fork-join model of parallel execution was proposed; called
0penMP, it aims to provide a portable shared memory programming inter-
face for shared memory and low latency systems. Both paradigms offer
useful features for programming high performance computing systems
configured with a mixture of shared and distributed memory. In this pa-
per, we consider how these programming models may be combined to
write programs which exploit the full capabilities of such systems.

1 I n t r o d u c t i o n

Recently, high performance systems with physically distributed memory, and
multiple processors with shared memory at each node, have come onto the mar-
ket. Some have relatively low latency and may support at least modera te levels of
shared memory parallelism. This has mot ivated a group of hardware and com-
piler vendors to define OpenMP, an interface for shared memory p rogramming
which they hope to see adopted by the community. 0penl~P [2] supports a model
of shared memory parallel programming which is based to some extent on PCF
[3], an earlier effort to define a s tandard interface, but increases the power of its
parallel constructs by permit t ing parallel regions to include subprograms.

HPF was designed to exploit da ta locality and does not provide features for
utilizing shared memory in a system; 0penMP provides the latter, however it
does not support da ta locality. In this paper we consider how these paradigms
might be combined to program distributed memory multiprocessing systems
(DMMPs) which may require both of these. We assume that such a system
consists of a number of interconnected p r o c e s s i n g n o d e s , or s imply n o d e s ,
each of which is associated with a specific physical memory module and one
or more general-purpose p r o c e s s o r s which share this memory and execute a
p rogram's instructions at run time: we emphasize this two-level s tructure by
calling such systems SM-DMMPs.

* This research was supported by the National Aeronautics and Space Administration
under NASA Contract No. NAS1-97046 while both authors were in residence at the
Institute for Computer Applications in Science and Engineering (ICASE), NASA
Langley Research Center, Hampton, VA 23681-0001.

651

We first consider interfacing the paradigms, enabling each of them to be used
where appropriate. However, there is also potential for a tighter integration of at
least some features of HPF with those offered by 0penl~P. We therefore examine an
approach which combines HPF data mappings with 0penl~P constructs, permitting
exploitation of shared memory whilst coordinating the mapping of data and work
to the target machine in a manner which preserves data locality.

This paper is organized as follows. Section 2 briefly describes the features of
each paradigm, and in Section 3 we consider an interface between them based
upon the HPF extrinsic mechanism. We speculate on the potential for a closer
integration of the two, and illustrate each of them with a multiblock application
example.

2 A B r i e f C o m p a r i s o n o f H P F a n d O p e n M P

High Performance Fortran (HPF) is a set of extensions to Fortran, designed to
facilitate data parallel programming on a wide range of architectures [1]. It
presents the user with a conceptual single thread of control. HPF directives allow
the programmer to specify the distribution of data across processors, thus pro-
viding a high level description of the program's data locality, while the compiler
generates the actual low-level parallel code for communication and scheduling of
instructions. HPF also defines directives for expressing loop parallelism and sim-
ple task parallelism, where there is no interaction between tasks. Mechanisms
for interfacing with other languages and programming models are provided.

0penYlP is a set of directives, with bindings for Fortran 77 and C /C++ , for
explicit shared memory parallel programming ([2]). It is based upon the fork-
join execution model, in which a single master thread begins execution and
spawns worker threads to perform computations in parallel as required. The
user must specify the parallel regions, and may explicitly coordinate threads.
The language thus provides directives for declaring such regions, for sharing
work among threads, and for synchronizing them. An order may be imposed on
variable updates and critical regions defined. Threads may have private copies
of some of the program's variables. Parallel regions may differ in the number of
threads which execute them, and the assignation of work to threads may Mso
be dynamically determined. Parallel sections easily express other forms of task
parallelism; interaction is possible via shared data. The user must take care of
any potential race conditions in the code, and must consider in detM1 the data
dependences which need to be respected.

Both paradigms provide a parallel loop with private data and reduction
operations, yet these differ significantly in their semantics. Whereas the HPF
INDEPENDENT loop requires data independence between iterations (except for re-
ductions), 0penl~P requires only that the construct be specified within a parallel
region in order to be executed by multiple threads. This implies that the user has
to handle any inter-iteration data dependencies explicitly. HPF permits private
variables only in this context; otherwise, variables may not have different values
in different processes. 0penl~P permits private variables - with potentially differ-

652

ent values on each thread - in all parallel regions and work-sharing constructs.
This extends to common blocks, private copies of which may be local to threads.
Even subobjects of shared common blocks may be private. Sequence association
is permit ted for shared common block da ta under 0penl~p; for HPF, this is the
case only if the common blocks are declared to be sequential.

The HPF programming model allows the code to remain essentially sequential.
I t is suitable for data-driven computat ions, and on machines where da ta locality
dominates performance. The number of executing processes is static. In contrast,
0penMP creates tasks dynamical ly and is more easily adapted to a fluctuating
workload; tasks may interact in non-trivial ways. Yet it does not enable the
binding of a loop iteration to the node storing a specific da tum. Thus each pro-
g ramming model has specific merits with respect to p rogramming SM-DMMPs,
and provides functionality which cannot be expressed within the other.

3 C o m b i n i n g H P F w i t h O p e n M P

In this section we examine two ways of combining HPF and 0penMP such tha t we
can exploit the features of both approaches. Note that the logical processors of
HPF can be associated with either the nodes or with the individual processors
of an SM-DMMP. In the former case, the user must rely on au tomat ic shared
memory parallelization to exploit all processors on a node. In the lat ter case, a
typical implementat ion would create separate address spaces for each individual
processor, and even communicat ion between two processors on the same node
will require an explicit data transfer.

3.1 O p e n M P as a n H P F E x t r i n s i c K i n d

I t is a stated goal of HPF to interoperate with other programming paradigms. The
language specification defines the extrinsic mechanism for interfacing to p rogram
units which are written in other languages or do not assume the HPF model
of computat ion. The programming language and computat ion model must be
defined. An interface specification must be provided for each extrinsic procedure.
This approach keeps the two models completely separate, which implies tha t the
compilers can also be kept distinct; in particular, the 0penMp compiler does
not need to know anything about HPF data distributions. For the HPF calling
program, execution should proceed just as if an HPF subprogram was invoked.
HPF provides language interfaces for Fortran (90/95), Fortran 77 and C. We
consider only Fortran programs and 0penMP constructs in this p a p e r)

HPF provides the pre-defined programming models global, serial and local for
use with extrinsics. I t also permits additional models so long as conceptually one
copy of the called procedure executes initially. Tha t is the case for an 0penlqP
program. We define an extrinsic model below which allows us to invoke 0pen/qP
subroutines and functions from within an HPF program. We also indicate how
an alternative model might be defined.

1 The two Fortran language versions differ in the assumptions on sequence and storage
association, particularly when arguments are passed to subroutines.

653

T h e O p e n M P e x t r i n s i c m o d e l We base the OpenMP extrinsic kind upon the
predefined local model. It assumes that processors defined in an HPF program are
associated with nodes of the target system (the number of nodes, not the total
number of processors, is returned by HPF's NURBER..0FA~R[:}CESSORS function).

An 0penMP extrinsic procedure called under this model is realized by creating
a single local procedure on each node (or HPF processor). These execute concur-
rently and independently, exclusively within their respective node, until they
return to the HPF calling program upon completion. The calling program blocks
until all local procedures have terminated. With the extrinsic kind OpenMP,
therefore, each local procedure is an independent 0penMP routine, initially ex-
ecuted by a master thread on a processor of the node it is invoked on. It will
create worker threads on the same node when a parallel region is encountered;
no communication is possible with a local 0penMp procedure on another node.
Only the processors and memory on that node are available to it.

An explicit interface will describe the ttPF mapping of data required by the
routine; any remapping required is performed before the OpenMP extrinsic pro-
cedure is called. Each invocation will access the local part of distributed data
only. Scalar data arguments are available on each node. Only data visible to
the master thread will be returned: if they are scalar, the value must be the
same on each node. The 0penMP routine may not return to the caller from a
parallel region or from within a synchronization construct, and may not have
alternate entries. An 0penMP library routine will return information related to
the procedure executing on the node where it is invoked only.

This programming model might be very useful for systems with high latency
between nodes, such as clusters of workstations, where it is important to map
da ta to the node which needs them. It permits use of a finer grain of parallelism to
exploit the processors within each such node once the data is in place. However,
it is also restrictive: an OpenMP extrinsic routine can only exploit parallelism
within a single node, since other nodes, and their data, are not visible to it.

A n a l t e r n a t i v e e x t r i n s i c m o d e l Other extrinsic kinds may be defined which
conform to the requirements of HPF. In particular, an alternative can be defined
which permits an OpenI~P routine to utilize an entire platform, i.e. it begins with a
single master thread which is cognizant of all processors executing the program.
The team of threads created to execute a parallel region in the OpenlgP code
may thus span the entire machine. Since the 0penMP routine will not understand
HPF data mappings, all distributed arguments must be mapped to the processor
which will initiate the routine during its setup.

This model enables the user to switch between programming models, de-
pending upon which is most suitable for some region of the program. However,
it does not enable 0penMP to take advantage of HPF's data locality, and the initial
overhead might be large. Its practical value is therefore not clear.

654

3.2 Merg ing H P F and O p e n M P

An interface between two paradigms obviously does not permit full exploitation
of their features. The OpenMP extrinsic may be satisfactory for SM-DMMP ar-
chitectures with high latency. However, the alternative model is less appealing
as an approach to programming large low-latency SM-DMMPs, which may ben-
efit from both data locality and the flexibility of a shared memory model. We
thus consider augmenting the 0penMP directives with HPF directives directly, so
that both shared-memory parallelism and data locality can be expressed within
the same routines. 0penMP directives can then describe the parallel computation,
while HPF directives may map data to the nodes where it is used and bind the
execution of loop iterations to nodes storing distributed data.

Da ta Mappings The HPF data mapping directives were carefully defined to
affect a program's performance, but not its semantics. Thus they can be easily
integrated into QpenMP without changing the semantics of 0penMP programs.

It is natural to associate logical HPF processors with processing nodes under
this model, since data will be shared within a node unless it is thread-private.
Techniques from HPF compilers may be applied to prefetch data in bulk transfers
where permitted by the semantics of the code. The resulting language might
allow privatization of distributed variables just as HPF does inside INDEPENDENT
loops. In general, however, we expect that HPF directives will be used to explicitly
map large data objects, which are likely to be shared rather than being private
to each thread.

HPF does not support sequence or storage association for explicitly mapped
variables. This restriction must carry over to the integrated language so that the
compiler may exploit the mapping information. Common blocks with distributed
constituents must follow rules of both HPF and 0penMP. That is, if they are
named in a THREADPRIVATE directive, or in a PRIVATE clause, each private copy
inherits the original distribution. Storage for the explicitly mapped constituents
is dissociated from the storage for the common block itself.

In HPF programs, mapped data objects may be implicitly remapped across
procedure boundaries to match the prescriptive mapping directives for the formal
arguments. On the other hand, if they have been declared DYNAMIC, objects can
be explicitly remapped using a REDISTRIBUTE or REALIGN directive. In order to
facilitate remapping within an 0penMP program, we must impose the following
constraint: Any code which implicitly or explicitly remaps a data objects must
be encountered by all the threads that share that object. This ensures that if the
object is remapped, the new mapping is visible to all the threads which have
access to the data.

Add i t iona l H P F Cons t ruc t s HPF provides the ON directive to specify the
locus of computation of a block of statements, a loop iteration or subroutine
call. This might be used as an alternative to the 0penMP scheduling options to
bind the execution of code in a work-sharing construct to one or more nodes, or

655

logical HPF processors. An ON clause enables the user to specify, for example, the
node where a SINGLE region or a SECTION of a parallel sections construct is to
be executed. Similarly, it may bind each iteration of a DO construct to the node
where a specific data item is stored.

Finally, in contrast to the INDEPENDENT directive of HPF, parallel loops in
0penMP may have inter-iteration data dependencies. Thus an additional work-
sharing construct could be based upon the INDEPENDENT loop, which permits the
prefetching of data and may eliminate expensive synchronizations.

4 An Example

Scientific and engineering applications sometimes use a set of grids, instead of
a single grid, to model a complex problem domain. Such multiblock codes use
tens, hundreds, or even thousands of such grids, with widely varying shapes and
sizes.

S t r u c t u r e o f t h e A p p l i c a t i o n The main data structure in such an application
stores the values associated with each of the grids in the multiblock domain. It
is reMized by an array, MBLOCK, whose size is the number of grids NGRID
which is defined at run time. Each of its elements is a Fortran 90 derived type
containing the data associated with a single grid.

T Y P E GRID
I N T E G E R NX, NY
REAL, P O I N T E R :: U(:, :), V(:, :), F(:, :), R(:, :)

END T Y P E GRID
T Y P E (GRID), A L L O C A T A B L E :: MBLOCK(:)

The decoupling of a domain into separate grids creates internal grid bound-
aries. Values must be correctly transferred between these at each step of the
iteration. The connectivity structure is also input at run time, since it is specific
to a given computational domain. It may be represented by an array CONNECT
(not shown here) whose elements are pairs of sections of two distinct grids.

The structure of the computation is as follows:

DO ITERS = 1, MAXITERS
CALL UPDATE_BDRY (MBLOCK, CONNECT)
CALL IT_SOLVER (MBLOCK, SUM)
IF (SUM . LT. EPS) THEN finished

E N D DO

The first of these routines transfers intermediate boundary results between
grid sections which abut each other. We do not discuss it further. The second
routine comprises the solution step for each grid. It has the following main loop:

S U B R O U T I N E IT.SOLVER(MBLOCK, SUM)

656

SUM = 0.0
DO I -- 1, NGRID

CALL SOLVE_GRID(MBLOCK(I)%U, MBLOCK(I)%V, . . .)
CALL RESID_GRID(ISUM, MBLOCK(I)%R, MBLOCK(I)%V)
SUM = SUM + ISUM

END DO

END

Such a code generally exhibits two levels of parallelism. The solution step is
independent for each individual grid in the multiblock application. Hence each
iteration of this loop may be invoked in parallel. If the grid solver admits parallel
execution, then major loops in the subroutine it calls may also be parallelized.

Finally the routine also computes a residual; for each grid, it calls a proce-
dure RESID_GRID to carry out a reduction operation. The sum of the results
across all grids is produced and returned in SUM. This would require a parallel
reduction operation if the iterations are performed in parallel.

D i s t r i b u t i n g t h e G r i d s We again presume that an HPF processor maps onto a
node of the underlying machine rather than to an individual physical processor.
We map each grid to a single node (which may "own" several grids) by dis-
tributing the array MBLOCI(. Such a mapping permits levels of parallelism to
be exploited. It implies that the boundary update routine may need to transfer
data between nodes, whereas the solver routine can run in parallel on the pro-
cessors of a node using the shared memory in the node to access data. A simple
BLOCK distribution, as shown below, may not ensure load balance.

!HPF$ D I S T R I B U T E MBLOCK(B L O C K)

The INDIRECT distribution of HPF may be used to provide a finer grain of control
over the mapping.

4.1 Us ing a n O p e n M P E x t r i n s i c R o u t i n e

This version calls an OpenMP extrinsic to perform the solution step on each grid
as well as compute local contributions to the residual. The boundary updates
and the final residual summation are performed in the calling HPF program.

An interface declaration is required for the OpenMP extrinsic routine:

E X T R I N S I C ('OPENMP', 'LOCAL')
SUBROUTINE OPEN(MBLOCK, M, LSUM)

I N T E G E R M(:)
R EAL LSUM(:)
T Y P E (GRID), A L L O C A T A B L E :: MBLOCK(:)

657

Only the local segment of MBLOCI(will be passed to the local procedure, M
is its size and LSUM is the residual value for the local grids on the node.

The extrinsic subroutine is invoked on each node independently. The master
thread creates the required number of threads locally. It will return when each
of the threads has terminated. The calling HPF routine waits until all extrinsic
procedures have terminated.

S U B R O U T I N E OPEN(LOC_IVIBLOCK, NLOC, LOC_SUM)
SUM = 0.0
CALL GET_THREAD(NLOC, LOC-MBLOCK, N)

!$OMP CALL OMP_SET_NUM_TIIREADS(N)
!$OMP PARALLEL DO SCHEDULE (DYNAMIC) , DEFAULT (S H A R E D)
!$OMP R E D U C T I O N (+: LOC_SUM)

DO I -= 1, NLOC
CALL SOLVE_GRID(LOC_MBLOCK(I)%U)
CALL RESID_GRID(ISUM, LOC_MBLOCK(I)%R, .. .)
LOC_SUM = LOC_SUM + ISUM

E N D DO
R E T U R N

E N D

This approach is suitable for systems where the latency between nodes is
comparatively high. It permits direct experimentation with, and exploitation of,
threads in order to balance work despite large differences in grid sizes.

4.2 C o m b i n i n g H P F a n d O p e n M P

The combined model is very similar to the above; however, it is simpler to write
in the sense that there is no need to construct an extrinsic interface. The data
declarations and distribution are identical to those of the HPF program. The
IT_SOLVER routine can be directly written with 0penMP directives in a manner
very similar to the code shown above:

S U B R O U T I N E IT_SOLVER(MBLOCK, SUM)
!HPF$ D I S T R I B U T E MBLOCK(B L O C K)

SUM --- 0.0
CALL GET_THREAD(NGRID, MBLOCK, N)

!$OMP CALL OMP_SET_NUM_THREADS(N)
!$OMP PARALLEL DO SCttEDULE (DYNAMIC) , DEFAULT (S H A R E D)
!$OMP R E D U C T I O N (+: SUM)

DO I = 1, NGRID
!$HPF ON (H O M E (MBLOCK(I)), R E S I D E N T

CALL SOLVE_GRID(MBLOCK(I)%U, . . .)
CALL RESID_GRID(ISUM, MBLOCK(I)%R)

~$HPF END ON
SUM = SUM + ISUM

E N D DO
R E T U R N

E N D

658

This version again deals with the full array MBLOCK, rather than with local
segments. Thus, there may be a need to specify the locus of computat ion so that
each iteration is performed on the processor which stores its data. This can be
done using an HPF-style 0N-block along with the RESIDENT directive, as shown.

The execution differs. This time, the initialization of SUM will be performed
once only, on a single master thread which controls the entire machine. The
number of threads, N, is computed for the entire system, and the work is dis-
tr ibuted across all processors. This may enable an improved load balance. We
have avoided a two-step computation of SUM.

This approach is appropriate for a system with comparatively low latency,
which allows a single master thread on the machine and a global scheduling
policy, permitt ing a compiler/runtime system to do globM load balancing if
appropriate.

5 S u m m a r y

0penNP was recently proposed for adoption in the community by a group of ma-
jor vendors. It is not yet clear what level of acceptance it will find, yet there
is certainly a need for portable shared-memory programming. The functionality
it provides differs strongly from that of HPF, which considers the needs of dis-
tr ibuted memory systems. Since many current architectures have requirements
for both data locality and efficient shared memory parallel programming, there
are potential benefits in combining elements of these two paradigms. We have
shown in this paper that the HPF extrinsic mechanism enables usage of each
within a single program. This may facilitate the programming of workstation
clusters with standard interconnection technology, for example. It is less clear
if a large low latency machine will benefit from a simple interface. For these,
there appears to be added vMue in providing some level of integration. Given
the orthogonality of many concepts in the two programming models, they are
fundamentally highly compatible and a useful integrated model can be specified.
In particular, a combination of HPF data locality directives with 0penMP paral-
lelization constructs extends the scope of applicability of each of them. Since at
least one major vendor has already provided data mapping options together with
a shared memory parallel programming model [4], we expect that this avenue
will be closely explored by the 0penMP consortium in the near future.

References

1. High Performance Fortran Forum: High Performance Fortran Language Specifica-
tion. Version 2.0, January 1997

2. OpenMP Consortium: OpenMP Fortran Application Program Interface, Version
1.0, October, 1997

3. B. Leasure (Ed.): Parallel Processing Model for High Level Programming Languages,
Draft Proposed National Standard for Information Processing Systems, April 1994

4. Silicon Graphics, Inc.: MIPSpro Fortran 77 Programmer's Guide, 1996

