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Abstract

Recently, Milner and Moller have presented several decomposition results for processes. Inspired by these,
we investigate decomposition techniques for the verification of parallel systems. In particular, we consider
those of the form

‖n

i=1
pi = ‖m

j=1
qj (I)

where pi and qj are (finite) state systems. We provide a decomposition procedure for all pi and qj and

give criteria that must be checked on the decomposed processes to see whether (I) does or does not hold.

We analyse the complexity of our procedure and show that it is polynomial in n, m and the sizes of pi

and qj if there is no communication. We also show that with communication the verification of (I) is

co-NP hard, which makes it very unlikely that a polynomial complexity bound exists. But by applying

our decomposition technique to Milner’s cyclic scheduler we show that verification can become polynomial

in space and time for practical examples, where standard techniques are exponential.

Note: The authors are supported by the European Communities under ESPRIT Basic Research
Action 3006 (CONCUR).

1The first author’s current affiliation is University of Utrecht, Department of Philosophy, P.O.Box 80126, 3508 TC
Utrecht, email jfg@phil.ruu.nl. A full version of this paper has also appeared as technical report ECS-LFCS-92-193,
Department of Computer Science, University of Edinburgh.

1



1

1 Introduction

Most common techniques for the automated verification of parallel systems are based on some kind
of state-space exploration. Contemporary computer technology limits exploration to state spaces of
about 107 states. However, state spaces of most parallel systems are substantially larger.

This problem is identified by many researchers, and various solutions have been proposed. For
instance one may apply minimisation techniques when constructing state spaces [2], one may represent
the state space using hash techniques [11], or one may restrict the state space using some additional
information [7]. A more successful approach seems to be the smart encoding of state spaces, employing
the regularity that is often present in the state spaces of parallel systems. In particular, the results
based on binary decision diagrams (BDD’s) seem more than promising [3]. An argument that one
could raise against BDD’s is that it is not directly based on notions inherent to processes, such as
amount of communication, the structure of processes or the structure of communication, etc. This
may obscure the true causes of the success of BDD’s, and it may hinder further developments and a
proper understanding of applicability.

Recently, some interesting decomposition results have emerged in process theory [16, 17]. Inspired by
these results, we study whether decomposition techniques can be applied in order to obtain alternative
means for the verification of parallel systems. Basically, the idea is as follows: Consider processes
p = ‖n

i=1
pi and q = ‖m

j=1
qj . We want to establish whether p = q where ‘=’ represents some reasonable

process equivalence. In order to do so, we decompose each p i into pi1 . . . pim and each qj into qj1 . . . qjn

according to some particular decomposition rules. Then we must verify whether p ij = qji for all i
and j. The method is beneficial if the combination of performing the decompositions of the pi’s and
qj ’s along with checking each pij = qji is considerably more efficient than checking p = q directly. We
show that this is indeed so in particular cases, but we show also that it is very unlikely to be true in
general.

This paper first presents the decomposition scheme (after some preliminaries). Then we analyse
what we have actually gained. It turns out that when there is no communication, verification via
decomposition has a polynomial time and space complexity in the number and size of the processes
pi and qj . In the case where communication is allowed, we provide a straightforward proof that
verification is co-NP hard even in the case where the pi’s and qj ’s are finite and determinate. More
results of this kind can be found in [18]. Hence, polynomial verification is rather unlikely in this case.

In order to understand whether this intractability result rules out application of our techniques,
we consider an example. This is Milner’s scheduler [14], which is generally used as a benchmark for
verification tools [6, 10, 12], due to its simple description, and its exponentially growing state spaces
that it generates (in the number of ‘cyclers’ from which the scheduler is constructed). Verification via
decomposition uses only polynomial time and linear space. The largest intermediate state space that
is used in the verification has size 3k where k is the number of cyclers in the scheduler.

Our conclusions from the complexity analysis is that decomposition can indeed be a good technique
for the verification of parallel systems. When there is little communication, i.e. in the case where the
system has been adequately structured, the benefits of this technique may be especially high.

2 Preliminaries

In this paper we do not employ a particular process language. Rather, it turns out to be handy to
work in a setting where processes are viewed as (possibly infinite) transition systems.
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Definition 2.1. A transition system (TS) p = (Sp, αp,−→p, sp) is a four tuple, where

• Sp is a non-empty set of states;

• αp is a set of actions;

• −→p⊆ Sp × αp × Sp is a transition relation; and

• sp ∈ Sp is the initial state of the transition system.

We use p, q, r to range over transition systems, and α to range over sets of actions. Elements (t, a, t ′) of

a transition relation −→p are often written as t
a−→p t′. We also write t

a1···an−→ p t′ for t
a1−→p · · · an−→p t′.

A function α gives the set of actions of a transition system, e.g. α
(

(Sp, αp,−→p, sp)
)

= αp. The TS

p is finite-state if Sp is finite, and it is finite if there is no infinite sequence t1
a1−→p t2

a2−→p · · · ai−1−→p

ti
ai−→p ti+1 · · ·.

Definition 2.2. A TS p = (S, α,→, s) is called determinate with respect to some equivalence relation

∼ iff for all t ∈ S and a ∈ α: t
a−→ t1 and t

a−→ t2 implies t1 ∼ t2. In general it will be clear which
equivalence relation is meant, in which case we will simply say that p is determinate.

Definition 2.3. Let α be a set of actions. We have the following ‘standard’ transition systems.

• The willing process on α is the process that can always do an action from α:

Wα
def
=

(

{s}, α,−→, s
)

where −→ =
{

〈s, a, s〉 | a ∈ α
}

.

• The nil process is not willing to do anything: nil
def
= W∅.

Definition 2.4. Let p = (Sp, αp,−→p, sp) and q = (Sq, αq,−→q, sq) be TS’s. We can define the
following useful operations on TS’s.

• For an action a the a-prefix of p is the TS

a:p
def
=

(

Sp ∪ {s}, αp ∪ {a},−→p ∪{〈s, a, sp〉}, s
)

for s /∈ Sp.

• Assuming (without loss of generality) that Sp ∩ Sq = ∅, the sum or choice of p and q is the TS

p + q
def
=

(

Sp ∪ Sq ∪ {sp+q}, αp ∪ αq,−→p+q, sp+q

)

for sp+q /∈ Sp ∪ Sq,

where

−→p+q = −→p ∪ −→q ∪
{

〈sp+q, a, s′〉 | sp
a−→p s′ or sq

a−→ s′
}

.

• The parallel composition or synchronisation merge of p and q is the TS

p ‖ q
def
=

(

Sp × Sq, αp ∪ αq,−→p‖q, 〈sp, sq〉
)

where

〈s1, s2〉 a−→p‖q 〈s′1, s′2〉 iff







s1
a−→p s′1 and s2

a−→q s′2, or

s1
a−→p s′1, s2 = s′2 and a /∈ αq, or

s2
a−→q s′2, s1 = s′1 and a /∈ αp.
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Figure 1: The process p = b:a:nil ‖ c:a:nil

The synchronisation merge thus forces common actions to synchronise. We write ‖n

i=1 pi for

p1 ‖ . . . ‖ pn and ‖n

i=1,i6=k
for p1 ‖ . . . ‖ pk−1 ‖ pk+1 ‖ . . . ‖ pn. It is clear from the definition

that the associativity of the composition operator is immaterial.

• Let α1, α2 be two sets of actions. The (α1, α2)-projection of p is the TS

�α1

α2
(p)

def
=

(

Sp, α2 ∩ αp,
a−→�

α1
α2

(p), sp

)

where

s
a−→�

α1
α2

(p) s′ iff

{

s
b1···bna−→ p s′ with bi /∈ α2 & a ∈ α1 ∩ α2, or

s
a−→p s′ for a ∈ α2.

The projection operator � is also used for traces: (a1 · · · an) �α is the trace a1 · · · an from which
the actions ai /∈ α are removed.

Remark 2.5. The projection operator �α1

α2
has, as far as we know, not appeared in the literature.

In this article, it is solely introduced for the purpose of defining the decompositions. For an idea
how this operator works, consider the process p, given by the diagram in figure 1. This represents a
transition system with actions a, b and c, states s1, s2, s3, s4 and s5, initial state s1, and a transition
relation as suggested by the arrows. Clearly p is the result of composing p 1 = b:a:nil and p2 = c:a:nil

in parallel. Using the projection operator �α1

α2
we can project p onto its parallel components, where α1

contains those actions through which the components communicate and α2 contains all the actions of
that component. That is,

p1 = �
{a}
{a,b} (p) and p2 = �

{a}
{a,c} (p).

In the composition, the actions a and b appear in p1, a and c appear in p2, and a is the action through
which p1 and p2 communicate. Note that when calculating p1 and p2, the possibility of extending
actions backwards is essentially used. Also note that if we take α1 = ∅, then the projection operator
�∅α2

(p) behaves as the encapsulation operator ∂α(p)\α2
(p) from ACP [1] and the restriction operator

p\
(

α(p) \ α2

)

from CCS [15].

Remark 2.6. We now have three ways of specifying transition systems. We can describe them
explicitly, we can write them down algebraically using the operators that have just been introduced,
or we can draw a diagram such as in figure 1. In this paper, we also specify transition systems by
simple recursive equations containing only choice, action prefix and a single variable. A construction
that is sufficient for the examples in this paper is the following. Consider an equation

X = e(X) (1)

where e consists of action prefixes and choices only. Define the self-loop TS
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r =
(

{s}, {?}, {(s, ?, s)}, s
)

where ? /∈ α
(

e(nil)
)

. Construct the TS e(r) = (S, α,−→, t). The TS defined by (1) is then the TS

p = (S, α \ {?},−→p, t) where

−→p =
(

−→ ∩
(

S × α
(

e(nil)
)

× S
)

)

∪
{

〈t1, a, t2〉 | t1
?−→ t1 and t

a−→ t2

}

.

For the examples in this paper, this definition coincides with the generally accepted interpretation of
equations.

Remark 2.7. We can give operational characterisations of the above operators. We do not go into
this any further except to list them as follows, and refer the interested yet uninitiated reader to e.g.
[9] for understanding in interpreting these.

a:p
a−→ p Wα∪{a}

a−→ Wα∪{a}

p
a−→ p′

p + q
a−→ p′

q
a−→ q′

p + q
a−→ q′

p
a−→ p′

p ‖ q
a−→ p′ ‖ q

(

a /∈ α(q)
)

q
a−→ q′

p ‖ q
a−→ p ‖ q′

(

a /∈ α(p)
)

p
a−→ p′ q

a−→ q′

p ‖ q
a−→ p′ ‖ q′

p
a−→ p′

�α1

α2
(p)

a−→�α1

α2
(p′)

(

a ∈ α2

) p
b−→ p′ �α1

α2
(p′)

a−→ p′′

�α1

α2
(p)

a−→ p′′

(

a ∈ α1, b /∈ α2

)

3 Basic axioms

We will prove our results using axioms for ‖, � and W only. In this section we introduce these. The
axioms hold in strong bisimulation semantics, and therefore in most other reasonable semantics as
well.

Definition 3.1. Let p = (Sp, αp,−→p, sp) and q = (Sq, αq,−→q, sq) be TS’s. We call a relation
R ⊆ Sp × Sq a (p, q)-bisimulation relation iff tRu implies

1. if t
a−→p t′ then u

a−→q u′ for some u′ ∈ Sq with t′Ru′; and

2. if u
a−→q u′ then t

a−→p t′ for some t′ ∈ Sp with t′Ru′.

Two states t ∈ Sp and u ∈ Sq are (p, q)-bisimilar, written t↔––p,qu, iff there is a (p, q)-bisimulation
relation R relating t and u. We abbreviate ↔––p,p by ↔––p. The two TS’s p and q are bisimilar, written
p↔––q, if α(p) = α(q) and sp↔––p,qsq.

Lemma 3.2 (Congruence). ↔–– is a congruence with respect to action prefix, choice, parallel compo-
sition and (α1, α2)-projection.

The axioms that we use are presented in table 1. We do not strive for completeness of the axiomati-
sation. Rather, the axioms need only be sufficiently complete to satisfy our goal.

Lemma 3.3 (Soundness). The axioms in table 1 are sound with respect to ↔––.

Example 3.4. The following examples show why the conditions in R4, R5 and R6 of the last theorem
are necessary. For the condition in R4, observe that
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‖1 p ‖ (q ‖ r) = (p ‖ q) ‖ r

‖2 p ‖ q = q ‖ p

R1 p = �α
α(p) (p)

R2 �α1

α2
(p) = �

α1

α2∩α(p) (p)

R3 �α1

α2
(p) = �α1∩α2

α2
(p)

R4 �α1

α2
(p) = �α1

α2

(

�
α1∪α
α2∪α (p)

)

if α2 ∩ α = ∅

R5 �α1

α2
(p ‖ q) = �α1

α2
(p) ‖�α1

α2
(q) if α1 ⊆ α(p) ∩ α(q) ⊆ α2

R6 p = p ‖�α
α (p) if �α

α (p) is determinate

R7 �α
∅ (p) = nil

W1 p ‖ Wα(p) = p

W2 Wα1
‖ Wα2

= Wα1∪α2

W3 �α1

α2
(Wα) = Wα2∩α

Table 1: Basic axioms for operators

�∅{b} (a:b:nil) ↔–– nilb whereas �∅{b}

(

�
{b}
{b} (a:b:nil)

)

↔–– b:nil.

By nilb, we mean the TS nil with alphabet {b}, which can be defined by �∅{b} (a:b:nil). For the first

condition in R5, observe that

�
{c}
{b,c}

(

(a:nil + b:nil) ‖ c:nil
)

↔–– b:nil ‖ c:nil + c:nil whereas

�
{c}
{b,c} (a:nil + b:nil) ‖ �

{c}
{b,c} (c:nil) ↔–– b:nil ‖ c:nil.

For the second condition in R5, observe that

�
{a}
{a}

(

b:a:nil ‖ (a:nil + b:nil)
)

↔–– nila whereas

�
{a}
{a} (b:a:nil) ‖ �

{a}
{a} (a:nil + b:nil) ↔–– a:a:nil.

Finally, for the condition in R6, observe that for p = a:b:a:nil + a:b:b:nil,

p ‖ �
{a}
{a} (p) ↔–– p + a:b:nil.

4 Verification via decomposition

In this section we formulate our main result which explains how the verification of an equation p = q
with p = ‖n

i=1 pi and q = ‖m

j=1 qj can be performed via decomposition. In theorem 4.4 we describe
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the decomposition and we give some conditions that must be checked in order for the method to be
applicable. In the theorem, we use p and q on both the left and right hand sides, so that nothing
is apparently gained by applying the theorem. However in remark 4.6 we show how p and q can be
eliminated from the right hand side.

We begin with some straightforward lemmata that are used in the proofs to follow.

Lemma 4.1. If α ⊆ α(p), then p = p ‖ Wα. In particular, p = p ‖ nil.

Proof. p
W1= p ‖ Wα(p)

W2= p ‖ Wα(p) ‖ Wα
W1= p ‖ Wα. 2

Lemma 4.2. Assume that p = p1 ‖ p2. If α ⊆ α(p) and �α
α (p2 ‖ Wα) is determinate, then

p = p ‖�α
α (p2 ‖ Wα).

Proof.

p
lemma 4.1

= p1 ‖ p2 ‖ Wα

R6= p1 ‖ p2 ‖ Wα ‖�α
α

(

p2 ‖ Wα

)

lemma 4.1
= p ‖�α

α (p2 ‖ Wα)

2

Lemma 4.3. If α ∩ β = ∅ and �α
α (p) is determinate, then �α

α∪β (p) ‖�α
α (p) =�α

α∪β (p).

Proof.

�α
α∪β (p)

R2,R3,R6

= �
α∩α(p)
(α∪β)∩α(p)

(

p ‖�α∩α(p)
α∩α(p) (p)

)

R5= �
α∩α(p)
(α∪β)∩α(p) (p) ‖�α∩α(p)

(α∪β)∩α(p)

(

�
α∩α(p)
α∩α(p) (p)

)

R1,R2,R3,R4

= �α
α∪β (p) ‖�α

α (p)

2

Theorem 4.4 (Verification via decomposition). Let p = ‖n

i=1 pi and q = ‖m

j=1 qj . Let α consist of the

synchronous (communicating) actions of p and q. That is,

α
def
=

⋃

1≤i<j≤n

(

α(pi) ∩ α(pj)
)

∪ ⋃

1≤i<j≤m

(

α(qi) ∩ α(qj)
)

.

Assume that �α
α (pi ‖ Wα) and �α

α (qj ‖ Wα) are determinate for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. Then

p = q iff























pij = qji for 1 ≤ i ≤ n, 1 ≤ j ≤ m,

�α
α∪α(pi)

(p) =
m

‖
j=1

pij for 1 ≤ i ≤ n, and

�α
α∪α(qj)

(q) =
n

‖
i=1

qji for 1 ≤ j ≤ m,

where

pij
def
= �α

α ∪
(

α(pi)∩α(qj)
) (p) and qji

def
= �α

α ∪
(

α(pi)∩α(qj)
) (q)

Proof.



7

(⇐) For each 1 ≤ i ≤ n we can prove that:

p
lemma 4.2

= p ‖
n

‖
j=1,j 6=i

�α
α (pj ‖ Wα).

By repeating this process for all i we get

p
lemmas 4.2,4.1

=
(

p ‖ Wα

)

‖
( n

‖
i=1

n

‖
j=1,j 6=i

(

�α
α (pj ‖ Wα)

)

)

‖1,‖2,W2

=
n

‖
i=1

(

pi ‖ Wα

)

‖
( n

‖
i=1

n

‖
j=1,j 6=i

(

�α
α (pj ‖ Wα)

)

)

‖1,‖2

=
n

‖
i=1

(

(

pi ‖ Wα

)

‖
(

‖
j=1,j 6=i

�α
α (pj ‖ Wα)

)

)

R1,R2

=
n

‖
i=1

(

�α
α∪α(pi)

(pi ‖ Wα) ‖
( n

‖
j=1,j 6=i

�α
α∪α(pi)

(pj ‖ Wα)
)

)

‖1,‖2

=
n

‖
i=1

n

‖
j=1

(

�α
α∪α(pi)

(pj ‖ Wα)
)

R5=
n

‖
i=1

(

�α
α∪α(pi)

( n

‖
j=1

(pj ‖ Wα)
)

)

lemma 4.1
=

n

‖
i=1

(

�α
α∪α(pi)

(p)
)

assumption
=

n

‖
i=1

m

‖
j=1

pij

In the same way, we can deduce that q = ‖m

j=1 ‖
n

i=1 qij . Hence from the assumption that pij = qji

for each 1 ≤ i ≤ n and 1 ≤ j ≤ m, we can deduce that p = q.

(⇒) First it is clear that p = q immediately implies that pij = qji. So we now prove that p = q
implies the second condition of the theorem. For each 1 ≤ i ≤ n we can compute the following.

m

‖
j=1

pij =
m

‖
j=1

(

�α

α∪
(

α(pi)∩α(qj)
) (p)

)

lemma 4.1
=

m

‖
j=1

(

�α

α∪
(

α(pi)∩α(qj)
) (q ‖ Wα)

)

=
m

‖
j=1

(

�α

α∪
(

α(pi)∩α(qj)
)

(

m

‖
k=1

(qk ‖ Wα)
)

)

R5=
m

‖
j=1

m

‖
k=1

(

�α

α∪
(

α(pi)∩α(qj)
) (qk ‖ Wα)

)

R2=
m

‖
j=1

m

‖
k=1

(

�α

α∪
(

α(pi)∩α(qj)∩α(qk)
) (qk ‖ Wα)

)

R2=
m

‖
j=1

( m

‖
k=1,k 6=j

�α
α (qk ‖ Wα)

)

‖ �α
α∪α(pi)

(qj ‖ Wα)

lemma 4.3
=

m

‖
j=1

(

�α
α∪α(pi)

(qj ‖ Wα)
)

R5= �α
α∪α(pi)

( m

‖
j=1

(qj ‖ Wα)
)

lemma 4.1
= �α

α∪α(pi)
(q)

= �α
α∪α(pi)

(p)

Finally, the third condition can be deduced in the same way. 2
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Remark 4.5. One may wonder whether it is enough simply to check pij = qji in theorem 4.4. This
would be a substantial optimisation. Unfortunately, this is not possible, as shown by the following
example. Consider p = (a:nil + b:nil) ‖ c:nil and q = a:nil ‖ (b:nil + c:nil). One may try to verify that
p = q by applying theorem 4.4. In this case α = ∅, so the determinacy constraints are easily satisfied.
Calculating each pij and qji yields the following.

p11 = q11 = a:nil p21 = q12 = b:nil

p12 = q21 = nil p22 = q22 = c:nil

So clearly pij = qji for all i and j, but p 6= q.

Remark 4.6. The right hand side of theorem 4.4 can be calculated using the following observations.

pij = �α

α∪
(

α(pi)∩α(qj)
)

( n

‖
k=1

pk

)

lemma 4.1, R5

=
n

‖
k=1

(

�α

α∪
(

α(pi)∩α(qj)
) (pk ‖ Wα)

)

.

We can calculate �α
α∪α(pi)

(p) using the following:

�α
α∪α(pi)

(p) = �α
α∪α(pi)

( n

‖
j=1

(pj ‖ Wα)
)

=
n

‖
j=1

(

�α
α∪α(pi)

(pj ‖ Wα)
)

.

Of course this also applies to qji and �α
α∪α(qj)

(q).

In section 6 we give an application of the above technique which takes advantage of the preceding
remark. However we first analyse the verification problem to demonstrate the benefit of the technique.

5 On the complexity of verification by decomposition

In this section we consider the complexity of verification through decomposition. We do this in
the setting of bisimulation equivalence, as the verification of trace based equivalences is generally
intractable on finite state systems [13]. We show that in the case where there is no communication
between the components, the verification is polynomial. In the case where there is communication
between the components, we show that the verification is co-NP hard, and hence inherently intractable.
The proof that we give is a simplified variant of those given in [18]. From these observations we draw
the conclusion that verification via decomposition is especially worthwhile when there are relatively
many asynchronous or non-communicating actions, and that its use is rather limited if almost every
action is used for communication. But it is exactly the former case that leads to enormous state
graphs, while in the latter case state graphs remain relatively small, and therefore, they can be more
readily handled by existing means.

We start out by reformulating theorem 4.4, but now with the restriction that there are no commu-
nication actions among the component processes, which means that α = ∅. For convenience, we write
�β for �∅β.

Corollary 5.1. Let p = ‖n

i=1 pi and q = ‖m

j=1 qj with α(pi) ∩ α(pj) = ∅ for all 1 ≤ i < j ≤ n and

α(qi) ∩ α(qj) = ∅ for all 1 ≤ i < j ≤ m. Then
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Equality Time complexity
Space complexity

pij = qji (1 ≤ i ≤ n O
(

m n
(

max
i,j

(| −→pi
| + | −→qj

|)
)

log
(

max
i,j

(|Spi
| + |Sqj

|)
)

)

1 ≤ j ≤ m) O
(

max
i,j

(

| −→pi
| + | −→qj

|
)

)

pi =
m

‖
j=1

pij (1 ≤ i ≤ n) O
(

m n max
i

| −→pi
| log(max

i
|Spi

|)
)

O
(

max
i

| −→pi
|
)

qi =
n

‖
i=1

qji (1 ≤ j ≤ m) O
(

m n max
j

| −→qj
| log(max

j
|Sqj

|)
)

O
(

max
j

| −→qj
|
)

p = q O
(

m n
(

max
i,j

(| −→pi
| + | −→qj

|)
)

log
(

max
i,j

(|Spi
| + |Sqj

|)
)

)

O
(

max
i,j

(| −→pi
| + | −→qj

|)
)

Table 2: Complexities of deciding bisimulation in non-communicating processes

p = q iff























pij = qji for 1 ≤ i ≤ n, 1 ≤ j ≤ m,

pi =
m

‖
j=1

pij for 1 ≤ i ≤ n, and

qj =
n

‖
i=1

qji for 1 ≤ j ≤ m,

where

pij
def
= �α(qj) (pi) and qji

def
= �α(pi) (qj)

Proof. From R1, R2, R7, lemma 4.1 and remark 4.6, we can show that pi =�α(pi) (p) and qj =�α(qj)

(q), and from R2, R7, lemma 4.1 and remark 4.6, we can show that �α(pi)∩α(qj) (p) =�α(qj) (pi) and
�α(pi)∩α(qj) (q) =�α(pi) (qj). The result then follows directly from theorem 4.4. 2

In order to verify that p = q, we must check the three identities at the right hand side of the curly
bracket in corollary 5.1. In table 2 we have put the complexities for each step and the complexity for
the total calculation. Here, Sr and −→r represent the sets of states and transitions, respectively, of
TS r. We assume that the number of states of our TS’s is smaller than the number of transitions, as
it is reasonable to assume that all states are reachable. The complexities in table 2 are motivated as
follows.

1. In order to calculate pij , we take pi and remove all transitions labelled with actions not in
α(qj). Then we remove all unreachable states, along with their outgoing transitions. This
takes O(| −→pi

|) time and space. In the same way we construct qji. In order to calculate

pij = qji, we apply a standard bisimulation algorithm [13], which takes O
(

(| −→pi
| + | −→qj
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|) log(|Spi
| + |Sqj

|)
)

time and O(| −→pi
| + | −→qj

|) space. As this must be repeated for each

1 ≤ i ≤ n and 1 ≤ j ≤ m, we obtain the complexities as given in table 2.1.

2. We obtain the second complexity measures via the following observation:

Lemma 5.2. Let r0 = (Sr0
, αr0

,−→r0
, sr0

) and r1 = (Sr1
, αr1

,−→r1
, sr1

) with αr0
∩ αr1

= ∅.
For all u, u′ ∈ Sr0

and v, v′ ∈ Sr1
:

u ↔––r0
u′ and v ↔––r1

v′ iff 〈u, v〉 ↔––r0‖r1
〈u′, v′〉.

Proof. Straightforward. 2

Reading this lemma from right to left, it says that if r0 ‖ r1 is not minimised with respect to
bisimulation, i.e. it contains different states that are bisimilar, then this is due to the fact that
either r0 or r1 was not minimal with respect to bisimulation. Reversing this reasoning says that
if we ensure that r0 and r1 are minimal, then r0 ‖ r1 will also be minimal.

We use this observation as follows in constructing ‖m

j=1 pij . First construct pi1 as indicated

above. This takes O(| −→pi
|) time and space. Minimise pi1 with respect to bisimulation,

obtaining p̂i1. Using the ordinary bisimulation algorithms, this takes O
(

| −→pi
| log(|Spi

|)
)

time and O(| −→pi
|) space. Now construct pi2 and its minimised variant p̂i2 likewise. Then

calculate p̂i1 ‖ p̂i2, but stop if the number of states of the result exceed those of pi. As p̂i1 and p̂i2

are minimal w.r.t. bisimulation, p̂i1 ‖ p̂i2 is minimal. Hence if the number of states of p̂i1 ‖ p̂i2

exceed the number of states of pi, then pi cannot be bisimilar to ‖m

j=1
pij . The complexity of

calculating p̂i1 ‖ p̂i2 is therefore O(| −→pi
|). We thus calculate ‖m

j=1 pij by stepwise adding

pi3, pi4, . . . , pim in the same way. This takes O
(

m | −→pi
| log(|Spi

|)
)

time and O(| −→pi
|)

space. The verification of pi = ‖m

j=1 pij can then be done without increasing the time and space
complexities. The steps above must be repeated for each 1 ≤ i ≤ n. So we obtain the figures in
table 2.

3. The analysis in this case is the same as in case 2, using q instead of p.

4. Combining the above gives these complexities for calculating p↔––q.

The procedure sketched above is rather wasteful, e.g. pij and qji are calculated rather often. We
have not investigated optimisations, as we expect that they will not improve the time and space
complexities. However, the example in section 6 gives the impression that by using the regularity of
processes pi and qj , substantial improvements can be expected.

In the case where there is communication between the processes, then the verification of ‖n

i=1 pi =

‖m

j=1 qj becomes co-NP hard for each process equivalence between trace and bisimulation equivalence.
We give a straightforward proof of this fact, actually showing that in the case that p i and qj are all
finite and determinate, this verification is co-NP complete. In [18] it is shown that this verification
becomes P-space hard if pi and qj are finite state. It also gives an EXPSPACE completeness result
in case abstraction of actions is allowed.

The proof technique in this section is a straightforward reduction from 3SAT [4]: Let x1, . . . , xk be
variables and lij ∈ {x1, . . . , xk,¬x1, . . . ,¬xk}. The question whether

n
∧

i=1

(li1 ∨ li2 ∨ li3)
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√
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x1 ¬x1

x2 ¬x2

xk ¬xk

Figure 2: The processes pi, p and p′

is satisfiable is well-known to be NP-complete. There is a straightforward polynomial way of reducing
an instance of 3SAT to an instance of 3SAT such that ki1 < ki2 < ki3 where lij refers to a variable
xkij

1. So 3SAT with this restriction is still NP-complete.

Lemma 5.3. Determining whether ‖n

i=1 pi = ‖m

j=1 qj holds is co-NP complete for finite determinate
pi and qj .

Proof. First we show co-NP hardness by reducing from 3SAT with the ordering restriction to the
question whether (‖n

i=1 pi) ‖ p = p′, for finite determinate pi, p and p′, does not hold. Consider the
following instance of 3SAT with restriction over variables x1, . . . , xk:

n
∧

i=1

(li1 ∨ li2 ∨ li3). (2)

The processes pi, p and p′ are constructed as in figure 2. Process p i has actions li1, li2, li3, ¬li1,
¬li2, ¬li3 and

√
. Here ¬lij stands for ¬x if lij ≡ x and for x if lij ≡ ¬x. A step lij corresponds

to considering a valuation σ that assigns true to lij , and a step ¬lij corresponds to considering a
valuation σ that assigns false to lij . Clearly, pi can perform a

√
step iff σ(li1 ∨ li2 ∨ li3) is true.

The process p is used to guarantee that in (‖n

i=1
pi) ‖ p, first a step corresponding to x1 must be

performed, then one corresponding to x2 etc. It has actions x1, . . . , xk, ¬x1, . . . ,¬xk and
√

. The
process p′ is equal to p with the only difference being that it has no

√
step at the end.

We have the following fact, from which our co-NP hardness result follows immediately.

n
∧

i=1

(li1 ∨ li2 ∨ li3) is satisfiable iff (
n

‖
i=1

pi) ‖ p = p′ does not hold.

1First remove all clauses li1∨ li2∨ li3 that contain a variable occurring both with and without negation. Next remove
double occurrences of variables in the clauses. Finally, introduce two new variables xk+1 and xk+2 and add these to
incomplete clauses.
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Here ‘=’ represents any equivalence between trace and bisimulation equivalence [8]. We now prove
this fact:

(⇒) Let σ be a valuation satisfying (2). Then (‖n

i=1 pi) ‖ p can perform the trace a1 · · · ak

√
where

ai =

{

xi if σ(xi) = true,
¬xi if σ(xi) = false.

Clearly, such a trace cannot be performed by p ′. So, (‖n

i=1 pi) ‖ p and p′ are not trace equivalent.

(⇐) If (‖n

i=1 pi) ‖ p can perform a trace a1 · · ·ak

√
, then the assignment σ defined as:

σ(xi) =

{

true if ai = xi,
false if ai = ¬xi.

is clearly a satisfying truth assignment for (2). Thus if (2) is not satisfiable, then (‖n

i=1 pi) ‖ p
cannot perform traces ending in

√
. So exactly the traces a1 · · ·ak with ai ≡ xi or ai ≡ ¬xi can

be performed by both (‖n

i=1 pi) ‖ p and p′, and hence they are trace equivalent. As all processes

are determinate, (‖n

i=1 pi) ‖ p and p′ are also bisimulation equivalent [5].

For completeness it is sufficient to guess a trace a1 · · · ak

√
and to check whether for each 1 ≤ i ≤ n,

aki1
aki2 aki3

√
is a trace of pi, where lij refers to a variable xkij

. This can clearly be done in polynomial

time. As a1 · · · ak

√
is always a trace of p, it must also be a trace of (‖n

i=1 pi) ‖ p, while it cannot be
a trace of p′. 2

It is not difficult to extend the proof above to include only two-way communication (see [18]) or
to use only two actions. However this is outside the setting of this paper, and it complicates matters
slightly.

6 An application

In this section, we apply the decomposition theorem to Milner’s scheduler [14], which is constructed
out of simple components, called cyclers. The scheduler is often used as a benchmark for programmes
which calculate process equivalences [6, 10, 12], because its state space grows exponentially with the
number of cyclers. Using our decomposition technique, we can avoid this exponential blowup.

The scheduler schedules k processes in cyclic succession, so that the first process is reactivated
after the kth process has been activated. However, a process must never be reactivated before it has
terminated. It is constructed of k cyclers C0, ..., Ck−1, as depicted in figure 3, where cycler Ci is
dedicated to process i. The left part of the figure shows the transition system for cycler C i, while
the right part depicts the architecture of the scheduler. The dotted lines indicate where the cyclers
synchronise. Cycler Ci first synchronises on a signal gi which indicates that it may start. It then
activates process i via an action ai. Next, it waits for termination of process i, indicated by bi, and
in parallel, using gi+1, activates the next cycler. Here, the indices are taken mod k, so that gk = g0.
It then returns to its initial state. The cycler Ci is described by:

C0 = a0:(b0:g1:g0:C0 + g1:b0:g0:C0),
Ci = gi:ai:(bi:gi+1:Ci + gi+1:bi:Ci) for 1 ≤ i < k.

The first cycler is assumed to have been initiated. The complete scheduler for k processes is thus
described by:
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Figure 3: A cycler and a scheduler

Schedk = C0 ‖ C1 ‖ · · · ‖ Ck−1.

A correctness criterion for the scheduler has been formulated in [14]. The a i and bi actions must
happen alternately, and the ai actions must happen cyclically. For the purposes of this example, we
are also interested in the precise relationship between the synchronisation actions g i and the actions bj.
Therefore we prove the scheduler Schedk equal to the specification Correctk from which the behaviour
of the scheduler can easily be understood. The process Correctk is defined by

Correctk = D0 ‖ D1 ‖ · · · ‖ Dk−1 ‖ BBk,

where

BBk = a0:g1:a1: · · · :gk−1:ak−1:g0:BBk,
D0 = a0:b0:g0:D0,
Di = gi:ai:bi:Di for 1 ≤ i < k.

The letters BB in BBk stand for ‘backbone’. It is easy to see that Correctk satisfies the correctness
criteria as given by Milner. This can be shown formally by applying hiding, but as this is rather
standard, we do not prove that here. For an idea of the proof, see the verification of the scheduler in
[14].

We wish to apply theorem 4.4 to verify that Schedk = Correctk. We thus let pi = Ci for 0 ≤ i < k,
and define qj = Dj for 0 ≤ j < k and qk = BBk.

First note that α = {ai, gi | 0 ≤ i < k}. A small calculation tells us that �α
α (pi ‖ Wα) is bisimilar

to Ei ‖ Wα, where Ei is defined by

E0 = a0:g1:g0:E0,
Ei = gi:ai:gi+1:Ei for 1 ≤ i < k,

and that �α
α (qj ‖ Wα) is bisimilar to Fj ‖ Wα, where Fj is defined by

F0 = a0:g0:F0,
Fj = gj:aj :Fj for 1 ≤ i < k,
Fk = BBk.

Obviously these are all determinate, so theorem 4.4 is applicable. We use remark 4.6 to calculate p ij ,
qji, �α

α∪α(pi)
(p) and �α

α∪α(qj)
(q). For i 6= j, we find that

pij =
k−1

‖
l=0

�α

α∪
(

α(pi)∩α(qj)
) (pl ‖ Wα)
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=
k−1

‖
l=0

�α
α (pl ‖ Wα)

=
k−1

‖
l=0

El ‖ Wα

= BBk,

and

qji =
k

‖
l=0

�α

α∪
(

α(pi)∩α(qj)
) (ql ‖ Wα)

=
k

‖
l=0

�α
α (ql ‖ Wα)

=
k

‖
l=0

Fl ‖ Wα

= BBk.

For i = j, we find that

pii =
k−1

‖
l=0

�α

α∪
(

α(pi)∩α(qi)
) (pl ‖ Wα)

=
k−1

‖
l=0

�α
α∪{bi}

(pl ‖ Wα) (3)

=
k−1

‖
l=0,l6=i

El ‖ Ci ‖ Wα

=

- - · · · - - - - · · · - - - · · · -

????????? - - · · · - - - · · · -

6
a0

if i 6= 0

g1 gi ai gi+1 ai+1 ak−1 g0 a0 ai−1

gi

bi bi bi bi bi bi bi bi bi

gi+1 ai+1 ak−1 g0 a0 ai−1

and

qii =
k−1

‖
l=0

�α

α∪
(

α(pi)∩α(qi)
) (ql ‖ Wα)

=
k−1

‖
l=0

�α
α∪{bi}

(ql ‖ Wα) (4)

=
k

‖
l=0

Fl ‖ Di ‖ Wα

=

- - · · · - - - - · · · - - - · · · -

????????? - - · · · - - - · · · -

6
a0

if i 6= 0

g1 gi ai gi+1 ai+1 ak−1 g0 a0 ai−1

gi

bi bi bi bi bi bi bi bi bi

gi+1 ai+1 ak−1 g0 a0 ai−1
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The initial sequences of actions a0 g1 · · · gi in the two diagrams above are only present if i 6= 0.
Obviously, pij and qji are thus equivalent. Note that the number of states of each intermediate term
is always smaller than 3k, i.e. linear in k.

Now note that pii ‖ BBk = pii and hence ‖k

j=0 pij = pii. Similarly, ‖k−1

i=0 qji = qjj . Hence

�α
α∪α(pi)

(p)
remark 4.6

=
k−1

‖
j=0

(

�α
α∪α(pi)

(pj ‖ Wα)
)

=
k−1

‖
j=0

(

�α∪{bi} (pj ‖ Wα)
)

(3)
=

k

‖
j=0

pij .

Equally, from remark 4.6 and (4) we have that �α
α∪α(qj)

(q) = ‖k−1

i=0 qji So according to theorem 4.4, it

follows that p = q.
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