Skip to main content

Discrete time process algebra

  • Conference paper
  • First Online:
CONCUR '92 (CONCUR 1992)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 630))

Included in the following conference series:

  • 165 Accesses

Abstract

The axiom system ACP of [BEK84] is extended to ACPdt, which involves discrete time delay, and then to ACPdt+ATP, an axiomatisation that adds key features of ATP [NIS90] to ACP. We give an interpretation of all discrete time constructs in the real time theory ACPp√I.

This work was done in the context of ESPRIT Basic Research Action 7166, CONCUR2. The second author received partial support from RACE project 1046, SPECS. This document does not necessarily reflect the views of the SPECS consortium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.C.M. Baeten & J.A. Bergstra, Real time process algebra. Formal Aspects of Computing 3 (2), 1991, pp. 142–188.

    Article  MATH  MathSciNet  Google Scholar 

  2. J.C.M. Baeten & J.A. Bergstra, A survey of axiom systems for process algebras, report P9111, Programming Research Group, University of Amsterdam 1991.

    Google Scholar 

  3. J.C.M. Baeten & J.A. Bergstra, Process algebra with signals and conditions, report CS-R9103, CWI, Amsterdam 1991. To appear in Proc. NATO Summer School, Marktoberdorf 1990 (M. Broy, ed.), Springer Verlag.

    Google Scholar 

  4. J.C.M. Baeten & J.A. Bergstra, Real space process algebra, report CSN 92/03, Dept. of Comp. Sci., Eindhoven University of Technology 1992.

    Google Scholar 

  5. J.C.M. Baeten & W.P. Weijland, Process algebra, Cambridge Tracts in Theor. Comp. Sci. 18, Cambridge University Press 1990.

    Google Scholar 

  6. J.A. Bergstra & J.W. Klop, Process algebra for synchronous communication, Inf. & Control 60, 1984, pp. 109–137.

    Article  MATH  MathSciNet  Google Scholar 

  7. S.D. Brookes, C.A.R. Hoare & A.W. Roscoe, A theory of communicating sequential processes, JACM 31 (3), 1984, pp. 560–599.

    Article  MATH  MathSciNet  Google Scholar 

  8. J.F. Groote, Specification and verification of real time systems in ACP, in: Proc. 10th Symp. on Protocol Specification, Testing and Verification, Ottawa (L. Logrippo, R.L. Probert & H. Ural, eds.), North-Holland, Amsterdam 1990, pp. 261–274.

    Google Scholar 

  9. J.F. Groote, Transition system specifications with negative premises, in: Proc. CONCUR'90, Amsterdam (J.C.M. Baeten & J.W. Klop, eds.), LNCS 458, Springer 1990, pp. 332–341.

    Google Scholar 

  10. D.P. Gruska & A. Maggiolo-Schettini, A timed process description language based on CCS, report TR-9/91, Universitá di Pisa 1991.

    Google Scholar 

  11. H. Hansson, Time and probabilities in formal design of distributed systems, Ph.D. thesis, report DoCS 91/27, Uppsala University, 1991.

    Google Scholar 

  12. M. Hennessy & T. Regan, A temporal process algebra, report 2/90, University of Sussex 1990.

    Google Scholar 

  13. A.S. Klusener, Completeness in real time process algebra, report CS-R9106, CWI Amsterdam 1991. Extended abstract in Proc. CONCUR'91, Amsterdam (J.C.M. Baeten & J.F. Groote, eds.), Springer LNCS 527, 1991, pp. 376–392.

    Google Scholar 

  14. A.S. Klusener, Abstraction in real time process algebra, to appear in Proc. REX Workshop on Real Time: Theory in Practice (J.W. de Bakker, C. Huizing, W.P. de Roever & G. Rozenberg, eds.), Mook 1991, Springer LNCS.

    Google Scholar 

  15. R. Milner, Communication and concurrency, Prentice-Hall 1989.

    Google Scholar 

  16. F. Moller & C. Tofts, A temporal calculus of communicating systems, report LFCS-89-104, University of Edinburgh 1989.

    Google Scholar 

  17. F. Moller & C. Tofts, A temporal calculus of communicating systems, in: Proc. CONCUR'90, Amsterdam (J.C.M. Baeten & J.W. Klop, eds.), LNCS 458, Springer 1990, pp. 401–415.

    Google Scholar 

  18. X. Nicollin & J. Sifakis, The algebra of timed processes ATP: theory and application, report RT-C26, IMAG, Grenoble 1990.

    Google Scholar 

  19. X. Nicollin, J.-L. Richier, J. Sifakis & J. Voiron, ATP: an algebra for timed processes, in Proc. IFIP TC2 Conf. on Progr. Concepts & Methods, Sea of Gallilee, Israel 1990.

    Google Scholar 

  20. G.M. Reed & A.W. Roscoe, A timed model for communicating sequential processes, TCS 58, 1988, pp. 249–261.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

W.R. Cleaveland

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baeten, J.C.M., Bergstra, J.A. (1992). Discrete time process algebra. In: Cleaveland, W. (eds) CONCUR '92. CONCUR 1992. Lecture Notes in Computer Science, vol 630. Springer, Berlin, Heidelberg . https://doi.org/10.1007/BFb0084806

Download citation

  • DOI: https://doi.org/10.1007/BFb0084806

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55822-4

  • Online ISBN: 978-3-540-47293-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics