Abstract
Various approaches based upon fuzzy and probabilistic methods are presented and discussed as a means to computing with words.
Preview
Unable to display preview. Download preview PDF.
References
Baldwin, J. F. (1986). “Support Logic Programming” in Fuzzy Sets—Theory and Applications, Ed. A. Jones and e. al, D. Reidel. 133–170.
Baldwin, J. F. (1991a). “Evidential Reasoning under Probabilistic and Fuzzy Uncertainties” in An Introduction to Fuzzy Logic and Applications in Intelligent Systems, Ed. R. R. Yager and L. A. Zadeh, Kluwer Academic Publishers. 297–335.
Baldwin, J. F. (1991b). “A New Approach to Inference Under Uncertainty for Knowledge Based systems” in Symbolic and Quantitative Approaches to Uncertainty, Ed. R. Kruse and P. Siegel, Springer-Verlag, Lecture Notes in Computer science 548. 107–115.
Baldwin, J. F. (1992a). “A Calculus For Mass Assignments In Evidential Reasoning” in Advances in the Dempster-Shafer Theory of Evidence, Ed. M. Fedrizzi, J. Kacprzyk and R. R. Yager, John Wiley.
Baldwin, J. F. (1992b). “The Management of Fuzzy and Probabilistic Uncertainties for Knowledge Based Systems” in Encyclopaedia of AI, Ed. S. A. Shapiro, John Wiley. (2nd ed.) 528–537.
Baldwin, J. F. (1993b). “Fuzzy Reasoning in Fril for Fuzzy Control and other Knowledge-based Applications.” Asia-Pacific Engineering Journal 3: 59–81.
Baldwin, J. F. (1993a). “Fuzzy, Probabilistic and Evidential Reasoning in Fril”, Proc. 2nd IEEE International Conference on Fuzzy Systems, San Francisco, CA, 459–464. (ISBN 0-7803-0614-7).
Baldwin, J. F. (1993). “Fuzzy Sets, Fuzzy Clustering, and Fuzzy Rules in AI” in Fuzzy Logic in AI, Ed. A. L. Ralescu, Springer Verlag. 10–23.
Baldwin, J. F. and Martin, T. P. (1995). “Refining Knowledge from Uncertain Relations—a Fuzzy Data Browser based on Fuzzy Object-Oriented Programming in Fril”, Proc. 4th IEEE International, Conference on Fuzzy Systems, Yokohama, Japan, 27–34.
Baldwin, J. F. (1996). “Knowledge from Data using Fril and Fuzzy Methods” in Fuzzy Logic in AI, Ed. J. F. Baldwin, John Wiley. 33–76.
Baldwin, J. F., Lawry, J. and Martin, T. P. (1996). “Efficient Algorithms for Semantic Unification”, Proc. Information Processing and the Management of Uncertainty, Spain, 527–532.
Baldwin, J. F. and Martin, T. P. (1991). “An Abstract Mechanism for Handling Uncertainty” in Uncertainty in Knowledge Bases, Ed. B. Bouchon-Meunier, R. R. Yager and L. A. Zadeh, Springer Verlag. 126–135.
Baldwin, J. F. and Martin, T. P. (1992). “Fast Operations on Fuzzy Sets in the Abstract Fril Machine”, Proc. First IEEE International Conference on Fuzzy Systems, San Diego, CA, 803–810. (ISBN 0-78-3-0236-2).
Baldwin, J. F. and Martin, T. P. (1993). “From Fuzzy Databases to an Intelligent Manual using Fril.” J. Intelligent Information Systems 2: 365–395.
Baldwin, J. F. and Martin, T. P. (1994). “Fuzzifying a Target Motion Analysis Model Using Fril and Mathematica”, Proc. 3rd IEEE International Conference on Fuzzy Systems, Florida, 1171–1175.
Baldwin, J. F. and Martin, T. P. (1996). “A Fuzzy Data Browser in Fril” in Fuzzy Logic in AI, Ed. J. F. Baldwin, John Wiley. 101–124.
Baldwin, J. F., Gooch, R. M. and Martin, T. P. (1996). “Fuzzy Processing of Hydrophone Sounds.” Fuzzy Sets and Systems 77(1): 35–48.
Baldwin, J. F. and Martin, T. P. (1997). “Basic Concepts of a Fuzzy Logic Data Browser with Applications” in Software Agents and Soft Computing: Concepts and Applications, Ed. H. S. Nwana and N. Azarmi, Springer (LNAI 1198). 211–241.
Baldwin, J. F., Martin, T. P. and Pilsworth, B. W. (1987). “The Implementation of FPROLOG—a Fuzzy Prolog Interpreter.” Fuzzy Sets and Systems 23: 119–129.
Baldwin, J. F., Martin, T. P. and Pilsworth, B. W. (1988). “FRIL Manual (Version 4.0)” Fril Systems Ltd, Bristol Business Centre, Maggs House, Queens Road, Bristol, BS8 1QX, UK. 1–697.
Baldwin, J. F., Martin, T. P. and Pilsworth, B. W. (1995). “FRIL—Fuzzy and Evidential Reasoning in AI”, Research Studies Press (John Wiley).
Baldwin, J. F., Lawry, J. and Martin, T. P. (1997a). “The Application of Generalised Fuzzy Rules to Machine Learning and Automated Knowledge Discovery.” International Journal of Uncertainty, Fuzziness, and Knowledge-based Systems (accepted): 1–22.
Baldwin, J. F., Lawry, J. and Martin, T. P. (1997b). “A Mass Assignment Based ID3 Algorithm for Decision Tree Induction”. International Journal of Intelligent Systems 12(7): 523–552.
Baldwin, J. F., Lawry, J. and Martin, T. P. (1997c). “Mass Assignment Fuzzy ID3 with Applications”, Proc. Fuzzy Logic—Applications and Future Directions, London, 278–294.
Baldwin, J. F., Martin, T. P. and Shanahan J. G. (1997), “Fuzzy logic methods in vision recognition”, in Proc. Fuzzy Logic: Applications and Future Directions Workshop, London, UK, pp 300–316.
Baldwin, J. F., Martin, T. P. and Shanahan J. G. (1997), “Modelling with words using Cartesian granule features”, in Proc. FUZZ-IEEE, Barcelona, Spain, pp 1295–1300.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Baldwin, J.F. (1999). Mass assignment fundamentals for computing with words. In: Ralescu, A.L., Shanahan, J.G. (eds) Fuzzy Logic in Artificial Intelligence. FLAI 1997. Lecture Notes in Computer Science, vol 1566. Springer, Berlin, Heidelberg . https://doi.org/10.1007/BFb0095069
Download citation
DOI: https://doi.org/10.1007/BFb0095069
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66374-4
Online ISBN: 978-3-540-48358-8
eBook Packages: Springer Book Archive