Skip to main content

Improving backtrack search for SAT by means of redundancy

  • Communications
  • Conference paper
  • First Online:
Foundations of Intelligent Systems (ISMIS 1999)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1609))

Included in the following conference series:

Abstract

In this paper, a new heuristic that can be grafted to many of the most efficient branching strategies for Davis and Putnam procedures for SAT is described. This heuristic gives a higher weight to clauses that have been shown unsatisfiable at some previous steps of the search process. It is shown efficient for many classes of SAT instances, in particular structure ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artificial Intelligence, volume 81, March 1996. Special volume on frontiers in problem solving: phase transition and complexity.

    Google Scholar 

  2. R. J. Bayardo Jr. and R. C. Schrag. Using CSP Look-Back Techniques to Solve Real-World SAT Instances. In Proc. of the Fourteenth National Conference on Artificial Intelligence (AAAI’97), pages 203–208, Providence, Rhode Island, 27–31 July 1997.

    Google Scholar 

  3. Y. Boufkhad. Aspects probabilites et algorithmiques du problème de satisfiabilité. PhD thesis, Université de Paris VI, 1996.

    Google Scholar 

  4. P. Cheeseman, B. Kanefsky, and W. M. Taylor. Where the Really Hard Problems Are. In Proc. of the Twelfth International Joint Conference on Artificial Intelligence (IJCAI’91), pages 163–169, 1991.

    Google Scholar 

  5. V. Chvátal and E. Szemerédi. Many Hard Examples for Resolution. Journal of the Association for Computing Machinery, 35(4):759–768, 1988.

    MATH  MathSciNet  Google Scholar 

  6. S. Cook. The complexity of theorem proving procedures. In Proc. of Third Annual ACM Symp. on Th. of Computing, pages 151–158, 1971.

    Google Scholar 

  7. J. M. Crawford. Solving Satisfiability Problems Using a Combination of Systematic an Local Search, 1993. Working notes of the DIMACS challenge on SAT organized by the Center for Discrete Mathematics and Computer Science of Rutgers University.

    Google Scholar 

  8. J. M. Crawford and L. D. Auton. Experimental Results on the Crossover Point in Random 3-SAT. Artificial Intelligence [1], 81:31–57, 1996.

    Article  MathSciNet  Google Scholar 

  9. M. Davis, G. Logemann, and D. Loveland. A Machine Program for Theorem Proving. CACM, 5:394–397, 1962.

    MATH  MathSciNet  Google Scholar 

  10. M. Davis and H. Putnam. A Computing Procedure for Quantification Theory. Journal of the Association for Computing Machinery, 7:201–215, 1960.

    MATH  MathSciNet  Google Scholar 

  11. Second SAT challenge organized by the Center for Discrete Mathematics and Computer Science of Rutgers University, 1993. The benchmarks used in our tests can be obtained by anonymous ftp from Rutgers University Dimacs Center: ftp dimacs.rutgers.edu cd pub/challenge/sat/benchmarks/cnf.

    Google Scholar 

  12. O. Dubois, P. Andre, Y. Boufkhad, and J. Carlier. SAT versus UNSAT. In D. S. Johnson and M. A. Trick, editors, Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, volume 26 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 415–436, 1996.

    Google Scholar 

  13. O. Dubois and J. Carlier. Probabilistic Approach to the Satisfiability Problem. Theoretical Computer Science, 81:65–75, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  14. J. Franco and M. Paull. Probabilistic Analysis of the Davis and Putnam procedure for Solving the Satisfiability Problem. Discrete Applied Math., 5:77–87, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  15. J. W. Freeman. Improvement to propositional satisfiability search. PhD thesis, Univ. of Philadelphia, 1995.

    Google Scholar 

  16. J.-K. Hao and L. Tétart. CH-SAT: A Complete Heuristic Procedure for Satisfiability Problems. In in Proc. of the ECAI’96 Workshop on Advances in Propositional Deduction, pages 27–38, Budapest, Hungary, 13 August 1996.

    Google Scholar 

  17. R. G. Jeroslow and J. Wang. Solving propositional satisfiability problems. In Annals of Mathematics and Artificial Intelligence, pages 167–187, 1990.

    Google Scholar 

  18. D. S. Johnson and M. A. Trick, editors. Cliques, Coloring, and Satisfiability: Second Dimacs Implementation Challenge, volume 26 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society, 1996.

    Google Scholar 

  19. C. Li and Anbulagan. Heuristic Based on Unit Propagation for Satisfiability Problems. In Proc. of the Fifteenth International Joint Conference on Artificial Intelligence (IJCAI’97), pages 366–371, Nagoya, Japan, 1997.

    Google Scholar 

  20. J. P. Marques Silva. An Overview of Backtrack Search Satisfiability Algorithms. In Proc. of the Fifth International Symposium on Artificial Intelligence and Mathematics, Fort Lauderdale, Florida, January 1998. available at http://rutcor.rutgers.edu/~amai/Proceedings.html.

    Google Scholar 

  21. B. Mazure, L. Saïs, and É. Grégoire. Tabu Search for SAT. In Proc. of the Fourteenth National Conference on Artificial Intelligence (AAAI’97), pages 281–285, Rhodes Island, 27–31 July 1997.

    Google Scholar 

  22. B. Mazure, L. Saïs, and É. Grégoire. Boosting Complete Techniques thanks to local search methods. Annals of Mathematics and Artificial Intelligence, 22:319–331, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  23. B. Mazure, L. Saïs, and É. Grégoire. CRIL Platform for SAT. In Proc. of the Fifteenth International Conference on Automated Deduction (CADE-15), volume 1421 of LNAI, Springer, pages 124–128, 1998.

    Google Scholar 

  24. A. Rauzy. On the complexity of the David and Putnam’s Procedure on Some Polynomial Sub-Classes of SAT. Technical Report LaBRI 806-94, Université de Bordeaux 1, 1994.

    Google Scholar 

  25. B. Selman, H. A. Kautz, and B. Cohen. Local Search Strategies for Satifiability Testing. In Proc. 1993 DIMACS Workshop on Maximum Clique, Graph Coloring, and Satisfiability, pages 521–531, 1993.

    Google Scholar 

  26. B. Selman, D. Mitchell, and H. Levesque. A New Method for Solving Hard Satisfiability Problems. In Proc. of the Tenth National Conference on Artificial Intelligence (AAAI’92), pages 440–446, San Jose, California, 12–16 July 1992.

    Google Scholar 

  27. B. Selman, D. Mitchell, and H. Levesque. Hard and easy distributions of SAT problems. In Proc. of the Tenth National Conference on Artificial Intelligence (AAAI’92), pages 459–465, San Jose, California, 12–16 July 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Zbigniew W. Raś Andrzej Skowron

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brisoux, L., Grégoire, É., Saïs, L. (1999). Improving backtrack search for SAT by means of redundancy. In: Raś, Z.W., Skowron, A. (eds) Foundations of Intelligent Systems. ISMIS 1999. Lecture Notes in Computer Science, vol 1609. Springer, Berlin, Heidelberg . https://doi.org/10.1007/BFb0095116

Download citation

  • DOI: https://doi.org/10.1007/BFb0095116

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65965-5

  • Online ISBN: 978-3-540-48828-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics