Skip to main content

Inverting inductively defined relations in LEGO

  • Conference paper
  • First Online:
Types for Proofs and Programs (TYPES 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1512))

Included in the following conference series:

  • 146 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. M. Burstall. Inductively Defined Relations: A Brief Tutorial. Extended Abstract. In Haveraan, M., and Owe, O., and Dahl, O.-J. editors, Recent Trends in Data Types Specification. Springer LNCS 1130, pp14–17. 1996.

    Google Scholar 

  2. J. Camilleri and T. Melham. Reasoning with Inductively Defined Relations in the HOL Theorem Prover. Technical Report No. 265 University of Cambridge Computer Laboratory. 1992.

    Google Scholar 

  3. K. Clark. Negation as Failure. pp293–322 of Logic and Data Bases, edited by H. Gallaire and J. Minker. Plenum Press. 1978.

    Google Scholar 

  4. C. Cornes, J. Courant, J.F. Fillaître, G. Huet, C. Murthy, C. Parent, C. Paulin, B. Werner. The Coq Proof Assistant Reference Manual, Version 5.10. Projet Coq, Inria-Rocquencourt and CNRS-ENS Lyon, France.

    Google Scholar 

  5. C. Cornes Compilation du Filtrage avec Types Dépendants dans le Système Coq. Actes de la réunion du pôle Spécification et Preuves du GDR Programmation. Orleans, Novembre 1996.

    Google Scholar 

  6. C. Cornes, D. Terrasse. Automating Inversion of Inductive Predicates in Coq. In BRA Workshop on Types for Proofs and Programs, Turin, June 1995. To appear in LNCS series.

    Google Scholar 

  7. L.-H. Eriksson. A finitary version of the calculus of partial inductive definitions. In: L.-H. Eriksson, L. Hallnäs & P. Schroeder-Heister (editors), Extensions of Logic Programming. Second International Workshop, ELP-91, Stockholm. Springer LNCS 596, pp89–134. 1992.

    Google Scholar 

  8. P. Dybjer. Inductive Sets and Families in Martin-Löf's Type Theory. pp280–306 of Logical Frameworks, edited by G. Huet and G. Plotkin. CUP 1991.

    Google Scholar 

  9. E. Giminez. Codifying guarded definitions with recursive schemes. Proceedings of Types 94, pp39–59.

    Google Scholar 

  10. L. Hallnäs. Partial Inductive Definitions. Theoretical Computer Science. Vol. 87. pp115–142. 1991.

    MATH  MathSciNet  Google Scholar 

  11. Introduction to HOL; A theorem proving environment for higher order logic. Edited by M.J.C. Gordon and T.F. Melham. CUP 1993.

    Google Scholar 

  12. Jean-Pierre Jouannaud and Claude Kirchner. Solving Equations in Abstract Algebras: A Rule-Based Survey of Unification. pp257–321 of Computational Logic: Essays in Honor of Alan Robinson, edited by Jean-Louis Lassez and Gordon Plotkin, MIT Press, 1991.

    Google Scholar 

  13. Zhaohui Luo. Computation and Reasoning: A Type Theory for Computer Science. OUP 1994.

    Google Scholar 

  14. Zhaohui Luo, Randy Pollack. LEGO Proof Development System: User Manual. Technical Note, 1992.

    Google Scholar 

  15. Lena Magnusson. The Implementation of ALF. PhD Thesis. Chalmers University of Technology and University of Göteborg, Sweden. January 1995.

    Google Scholar 

  16. L. Paulson. Logic and Computation: Interactive Proof with Cambridge LCF. Cambridge Tracts in Theoretical Computer Science 2. CUP 1987.

    Google Scholar 

  17. Randy Pollack. Incremental Changes in LEGO: Technical Note, 1994.

    Google Scholar 

  18. Prawitz, D. Natural Deduction: A Proof-Theoretical Study. Almqvist & Wiksell. Stockholm, 1965.

    Google Scholar 

  19. H. Tamaki, T. Sato. Unfold/Fold Transformation of Logic Programs. Proceedings of Second International Logic Programming Conference. pp127–138. Uppsala, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Eduardo Giménez Christine Paulin-Mohring

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

McBride, C. (1998). Inverting inductively defined relations in LEGO. In: Giménez, E., Paulin-Mohring, C. (eds) Types for Proofs and Programs. TYPES 1996. Lecture Notes in Computer Science, vol 1512. Springer, Berlin, Heidelberg . https://doi.org/10.1007/BFb0097795

Download citation

  • DOI: https://doi.org/10.1007/BFb0097795

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65137-6

  • Online ISBN: 978-3-540-49562-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics