Preview
Unable to display preview. Download preview PDF.
References
R. M. Burstall. Inductively Defined Relations: A Brief Tutorial. Extended Abstract. In Haveraan, M., and Owe, O., and Dahl, O.-J. editors, Recent Trends in Data Types Specification. Springer LNCS 1130, pp14–17. 1996.
J. Camilleri and T. Melham. Reasoning with Inductively Defined Relations in the HOL Theorem Prover. Technical Report No. 265 University of Cambridge Computer Laboratory. 1992.
K. Clark. Negation as Failure. pp293–322 of Logic and Data Bases, edited by H. Gallaire and J. Minker. Plenum Press. 1978.
C. Cornes, J. Courant, J.F. Fillaître, G. Huet, C. Murthy, C. Parent, C. Paulin, B. Werner. The Coq Proof Assistant Reference Manual, Version 5.10. Projet Coq, Inria-Rocquencourt and CNRS-ENS Lyon, France.
C. Cornes Compilation du Filtrage avec Types Dépendants dans le Système Coq. Actes de la réunion du pôle Spécification et Preuves du GDR Programmation. Orleans, Novembre 1996.
C. Cornes, D. Terrasse. Automating Inversion of Inductive Predicates in Coq. In BRA Workshop on Types for Proofs and Programs, Turin, June 1995. To appear in LNCS series.
L.-H. Eriksson. A finitary version of the calculus of partial inductive definitions. In: L.-H. Eriksson, L. Hallnäs & P. Schroeder-Heister (editors), Extensions of Logic Programming. Second International Workshop, ELP-91, Stockholm. Springer LNCS 596, pp89–134. 1992.
P. Dybjer. Inductive Sets and Families in Martin-Löf's Type Theory. pp280–306 of Logical Frameworks, edited by G. Huet and G. Plotkin. CUP 1991.
E. Giminez. Codifying guarded definitions with recursive schemes. Proceedings of Types 94, pp39–59.
L. Hallnäs. Partial Inductive Definitions. Theoretical Computer Science. Vol. 87. pp115–142. 1991.
Introduction to HOL; A theorem proving environment for higher order logic. Edited by M.J.C. Gordon and T.F. Melham. CUP 1993.
Jean-Pierre Jouannaud and Claude Kirchner. Solving Equations in Abstract Algebras: A Rule-Based Survey of Unification. pp257–321 of Computational Logic: Essays in Honor of Alan Robinson, edited by Jean-Louis Lassez and Gordon Plotkin, MIT Press, 1991.
Zhaohui Luo. Computation and Reasoning: A Type Theory for Computer Science. OUP 1994.
Zhaohui Luo, Randy Pollack. LEGO Proof Development System: User Manual. Technical Note, 1992.
Lena Magnusson. The Implementation of ALF. PhD Thesis. Chalmers University of Technology and University of Göteborg, Sweden. January 1995.
L. Paulson. Logic and Computation: Interactive Proof with Cambridge LCF. Cambridge Tracts in Theoretical Computer Science 2. CUP 1987.
Randy Pollack. Incremental Changes in LEGO: Technical Note, 1994.
Prawitz, D. Natural Deduction: A Proof-Theoretical Study. Almqvist & Wiksell. Stockholm, 1965.
H. Tamaki, T. Sato. Unfold/Fold Transformation of Logic Programs. Proceedings of Second International Logic Programming Conference. pp127–138. Uppsala, 1984.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
McBride, C. (1998). Inverting inductively defined relations in LEGO. In: Giménez, E., Paulin-Mohring, C. (eds) Types for Proofs and Programs. TYPES 1996. Lecture Notes in Computer Science, vol 1512. Springer, Berlin, Heidelberg . https://doi.org/10.1007/BFb0097795
Download citation
DOI: https://doi.org/10.1007/BFb0097795
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-65137-6
Online ISBN: 978-3-540-49562-8
eBook Packages: Springer Book Archive