Abstract
We prove the strong normalisation for any PTS, provided the existence of a certain Λ-set \(\mathfrak{A}^ \Uparrow \) (s) for every sort s of the system. The properties verified by the \(\mathfrak{A}^ \Uparrow \) (s)’s depend of the axiom and rules of the type system.
Preview
Unable to display preview. Download preview PDF.
References
T. Altenkirch. Constructions, Inductive Types and Strong Normalization. Ph.D. Thesis, University of Edinburgh, 1993.
H. Barendregt. Lambda Calculi with Types. In Handbook of Logic in Computer Science, Vol II, Elsevier, 1992
G. Barthe, P.-A. Melliès. On the Subject Reduction property for algebraic type systems. In Proceedings CSL'96, LNCS 1258, Springer Verlag, 1996.
G. Dowek, G. Huet and B. Werner. On the Definition of the η-long Normal Form in Type Systems of the Cube. Submitted to publication. See also http://pauillac.inria.fr/~werner/,1996.
H. Geuvers et M.-J. Nederhof. A modular proof of strong normalization for the Calculus of Constructions. Journal of Functional Programming, 1 (2):155–189, 1991.
J.-Y. Girard. Interprétation fonctionnelle et élimination des coupures de l'arithmétique d'ordre supérieur, Thèse d'Etat, Université Paris 7, 1972.
J. W. Klop, Combinatory Reduction Systems. Ph.D. Thesis, Utrecht University, 1980.
G. Longo and E. Moggi. Constructive Natural Deduction and its ω-set Interpretation.
Z. Luo. An Extended Calculus of Constructions. Ph.D. Thesis, University of Edinburgh, 1990.
P. Martin-Löf. Intuitionistic Type Theory. Studies in Proof Theory, Bibliopolis, 1984.
W. W. Tait. A realizability interpretation of the theory of species. In Logic Colloquium, R. Parikh Ed. LNM 453, Springer-Verlag, 1975.
J. Terlouw. Strong Normalization in Type Systems: a model theoretical approach. In Dirk van Dalen Festschrift, Henk Barendregt, Marc Bezem and Jan Willem Klop Eds. Dept. of Philosophy, Utrecht University, 1993.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Melliès, PA., Werner, B. (1998). A generic normalisation proof for pure type systems. In: Giménez, E., Paulin-Mohring, C. (eds) Types for Proofs and Programs. TYPES 1996. Lecture Notes in Computer Science, vol 1512. Springer, Berlin, Heidelberg . https://doi.org/10.1007/BFb0097796
Download citation
DOI: https://doi.org/10.1007/BFb0097796
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-65137-6
Online ISBN: 978-3-540-49562-8
eBook Packages: Springer Book Archive