Skip to main content

Hybridizing nested dissection and halo approximate minimum degree for efficient sparce matrix ordering

  • Conference paper
  • First Online:
Parallel and Distributed Processing (IPPS 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1586))

Included in the following conference series:

Abstract

Minimum Degree and Nested Dissection are the two most popular reordering schemes used to reduce fill-in and operation count when factoring and solving sparse matrices. Most of the state-of-the-art ordering packages hybridize these methods by performing incomplete Nested Dissection and ordering by Minimum Degree the subgraphs associated with the leaves of the separation tree, but to date only loose couplings have been achieved, resulting in poorer performance than could have been expected. This paper presents a tight coupling of the Nested Dissection and Halo Approximate Minimum Degree algorithms, which allows the Minimum Degree algorithm to use exact degrees on the boundaries of the subgraphs passed to it, and to yield back not only the ordering of the nodes of the subgraph, but also the amalgamated assembly subtrees, for efficient block computations.

Experimental results show the performance improvement, both in terms of fill-in reduction and concurrency during numerical factorization.

This work is supported by the French Commissariat à l’Énergie Atomique CEA/CESTA under contract No. 7V1555AC, and by the GDR ARP of the CNRS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Amestoy, T. Davis, and I. Duff. An approximate minimum degree ordering algorithm. SIAM J. Matrix Anal. and Appl., 17:886–905, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  2. P. Amestoy, I. Duff, and J.-Y. L’Excellent. Multifrontal parallel distributed symmetric and unsymmetric solvers. to appear in special issue of Comput. Methods in Appl. Mech. Eng. on domain decomposition and parallel computing, 1998.

    Google Scholar 

  3. C. Ashcraft. Compressed graphs and the minimum degree algorithm. SIAM J. Sci. Comput., 16(6):1404–1411, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  4. C. Ashcraft, S. Eisenstat, J. W.-H. Liu, and A. Sherman. A comparison of three column based distributed sparse factorization schemes. In Proc. Fifth SIAM Conf. on Parallel Processing for Scientific Computing, 1991.

    Google Scholar 

  5. P. Charrier and J. Roman. Algorithmique et calculs de complexité pour un solveur de type dissections emboîtées. Numerische Mathematik, 55:463–476, 1989.

    Article  MathSciNet  Google Scholar 

  6. G. A. Geist and E. G.-Y. Ng. Task scheduling for parallel sparse Cholesky factorization. International Journal of Parallel Programming, 18(4):291–314, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. George, M. T. Heath, J. W.-H. Liu, and E. G.-Y. Ng. Sparse Cholesky factorization on a local memory multiprocessor. SIAM Journal on Scientific and Statistical Computing, 9:327–340, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. George and J. W.-H. Liu. Computer solution of large sparse positive definite systems. Prentice Hall, 1981.

    Google Scholar 

  9. A. George and J. W.-H. Liu. The evolution of the minimum degree ordering algorithm. SIAM Review, 31:1–19, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  10. N. E. Gibbs, W. G. Poole, and P. K. Stockmeyer. A comparison of several bandwidth and profile reduction algorithms. ACM Trans. Math. Soft., 2:322–330, 1976.

    Article  MATH  Google Scholar 

  11. A. Gupta, G. Karypis, and V. Kumar. Scalable parallel algorithms for sparse linear systems. In Proc. Stratagem’96, Sophia-Antipolis, pages 97–110, July 1996.

    Google Scholar 

  12. B. Hendrickson and E. Rothberg. Improving the runtime and quality of nested dissection ordering. SIAM J. Sci. Comput., 20(2):468–489, 1998.

    Article  MathSciNet  Google Scholar 

  13. G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs. TR 95-035, University of Minnesota, June 1995.

    Google Scholar 

  14. G. Karypis and V. Kumar. MeTisA Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices—Version 4.0. University of Minnesota, September 1998.

    Google Scholar 

  15. R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection. SIAM Journal of Numerical Analysis, 16(2):346–358, April 1979.

    Article  MATH  MathSciNet  Google Scholar 

  16. J. W.-H. Liu. Modification of the minimum-degree algorithm by multiple elimination. ACM Trans. Math. Software, 11(2):141–153, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  17. F. Pellegrini and J. Roman. Sparse matrix ordering with scotch. In Proceedings of HPCN’97, Vienna, LNCS 1225, pages 370–378, April 1997.

    Google Scholar 

  18. R. Schreiber. Scalability of sparse direct solvers. Technical Report TR 92.13, RIACS, NASA Ames Research Center, May 1992.

    Google Scholar 

  19. W. F. Tinney and J. W. Walker. Direct solutions of sparse network equations by optimally ordered triangular factorization. J. Proc. IEEE, 55:1801–1809, 1967.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Rolim Frank Mueller Albert Y. Zomaya Fikret Ercal Stephan Olariu Binoy Ravindran Jan Gustafsson Hiroaki Takada Ron Olsson Laxmikant V. Kale Pete Beckman Matthew Haines Hossam ElGindy Denis Caromel Serge Chaumette Geoffrey Fox Yi Pan Keqin Li Tao Yang G. Chiola G. Conte L. V. Mancini Domenique Méry Beverly Sanders Devesh Bhatt Viktor Prasanna

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

Pellegrini, F., Roman, J., Amestoy, P. (1999). Hybridizing nested dissection and halo approximate minimum degree for efficient sparce matrix ordering. In: Rolim, J., et al. Parallel and Distributed Processing. IPPS 1999. Lecture Notes in Computer Science, vol 1586. Springer, Berlin, Heidelberg . https://doi.org/10.1007/BFb0097983

Download citation

  • DOI: https://doi.org/10.1007/BFb0097983

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65831-3

  • Online ISBN: 978-3-540-48932-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics