Skip to main content

Fiber-optic interconnection networks for signal processing applications

  • Conference paper
  • First Online:
Parallel and Distributed Processing (IPPS 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1586))

Included in the following conference series:

Abstract

In future parallel radar signal processing systems, with high bandwidth demands, new interconnection technologies are needed. The same reasoning can be made for other signal processing applications, e.g., those involving multimedia. Fiber-optic networks are a promising alternative and a lot of work have been done. In this paper, a number of fiber-optic interconnection architectures are reviewed, especially from a radar signal processing point-of-view. Two kinds of parallel algorithm mapping are discussed: (i) a chain of pipeline-stages mapped, more or less directly, one stage per computation node and (ii) SPMD (Same Program Multiple Data). Several network configurations, which are simplified due to the nature of the applications, are also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jonsson, M., A. Åhlander, M. Taveniku, and B. Svensson, “Time-deterministic WDM star network for massively parallel computing in radar systems,” Proc. Massively Parallel Processing using Optical Interconnections, MPPOI’96, Lahaina, HI, USA, Oct. 27–29, 1996, pp. 85–93.

    Google Scholar 

  2. Teitelbaum, K., “Crossbar tree networks for embedded signal processing applications,” Proc. Massively Parallel Processing using Optical Interconnections (MPPOI’98), Las Vegas, NV, USA, June 15–17, 1998, pp. 200–207.

    Google Scholar 

  3. Sano, B. J., and A. F. J. Levi, “Networks for the professional campus environment,” in Multimedia Technology for Applications. B. Sheu and M. Ismail, Eds., McGraw-Hill, Inc., pp. 413–427, 1998, ISBN 0-7803-1174-4.

    Google Scholar 

  4. Sano, B., B. Madhavan, and A. F. J. Levi, “8 Gbps CMOS interface for parallel fiber-optic interconnects,” Electronics Letters, vol. 32, pp. 2262–2263, 1996.

    Article  Google Scholar 

  5. POLO Technical Summary. University of Southern California, Oct. 1997.

    Google Scholar 

  6. Wong, P. C., and T.-S. P. Yum, “Design and analysis of a pipeline ring protocol,“ IEEE Transactions on communications, vol 42, no. 2/3/4, pp. 1153–1161, Feb./Mar./Apr. 1989.

    Article  Google Scholar 

  7. Jonsson, M., “Two fiber-ribbon ring networks for parallel and distributed computing systems,” Optical Engineering, vol. 37, no. 12, pp. 3196–3204, Dec. 1998.

    Article  Google Scholar 

  8. Jonsson, M., B. Svensson, M. Taveniku, and A. Åhlander, “Fiber-ribbon pipeline ring network for high-performance distributed computing systems,” Proc. Int. Symp. on Parallel Architectures, Algorithms and Networks (I-SPAN’97), Taipei, Taiwan, Dec. 18–20, 1997, pp. 138–143.

    Google Scholar 

  9. Jonsson, M., “Control-channel based fiber-ribbon pipeline ring network,” Proc. Massively Parallel Processing using Optical Interconnections (MPPOI’98), Las Vegas, NV, USA, June 15–17, 1998, pp. 158–165.

    Google Scholar 

  10. Brackett, C. A., “Dense wavelength division multiplexing networks: principles and applications,” IEEE Journal on Selected Areas in Communications, vol. 8, no. 6, pp. 948–964, Aug. 1990.

    Article  Google Scholar 

  11. Mukherjee, B., “WDM-based local lightwave networks part I: single-hop systems,” IEEE Network, pp. 12–27, May 1992.

    Google Scholar 

  12. Jonsson, M., K. Börjesson, and M. Legardt, “Dynamic time-deterministic traffic in a fiberoptic WDM star network,” Proc. 9th Euromicro Workshop on Real Time Systems, Toledo, Spain, June 11–13, 1997.

    Google Scholar 

  13. Jonsson, M., and B. Svensson, “On inter-cluster communication in a time-deterministic WDM star network,” Proc. 2nd Workshop on Optics and Computer Science (WOCS), Geneva, Switzerland, Apr. 1, 1997.

    Google Scholar 

  14. Brackett, C. A., “Foreword: Is there an emerging consensus on WDM networking?,” Journal of Lightwave Technology, vol. 14, no. 6, pp. 936–941, June 1996.

    Google Scholar 

  15. Kobrinski, H., M. P. Vecchi, E. L. Goldstein, and R. M. Bulley, “Wavelength selection with nanosecond switching times using distributed-feedback laser amplifiers,” Electronics Letters, vol. 24, no. 15, pp. 969–971, July 21, 1988.

    Google Scholar 

  16. Cheung, K.-W., “Acoustooptic tunable filters in narrowband WDM networks: system issues and network applications,” IEEE Journal on Selected Areas in Communications, vol. 8, no. 6, pp. 1015–1025, Aug. 1990.

    Article  MathSciNet  Google Scholar 

  17. Taveniku, M., A. Åhlander, M. Jonsson, and B. Svensson, “A multiple SIMD mesh architecture for multi-channel radar processing,” Proc. International Conference on Signal Processing Applications & Technology (ICSPAT’96), Boston, MA, USA, Oct. 7–10, 1996, pp. 1421–1427.

    Google Scholar 

  18. Mukherjee, B., “WDM-based local lightwave networks part II: multihop systems,” IEEE Network, pp. 20–32, July 1992.

    Google Scholar 

  19. Acampora, A. S., and M. J. Karol, “An overview of lightwave packet networks,” IEEE Network, pp. 29–41, Jan. 1989.

    Google Scholar 

  20. Irshid, M. I., and M. Kavehrad, “A fully transparent fiber-optic ring architecture for WDM networks,” Journal of Lightwave Technology, vol. 10, no. 1, pp. 101–108, Jan. 1992.

    Article  Google Scholar 

  21. Eriksen, P., K. Gustafsson, M. Niburg, G. Palmskog, M. Robertsson, and K. Åkermark, “The Apollo demonstrator-new low-cost technologies for optical interconnects,” Ericsson Review, vol. 72, no. 2, 1995.

    Google Scholar 

  22. Shahid, M. A., and W. R. Holland, “Flexible optical backplane interconnections,” Proc. Massively Parallel Processing using Optical Interconnections (MPPOI’96), Maui, HI, USA, Oct. 27–29, 1996, pp. 178–185.

    Google Scholar 

  23. Parker, J. W., P. J. Ayliffe, T. V. Clapp, M. C. Geear, P. M. Harrison, and R. G. Peall, “Multifibre bus for rack-to-rack interconnects based on opto-hybrid transmitter/receiver array pair,” Electronics Letters, vol. 28, no. 8, pp. 801–803, April 9, 1992.

    Google Scholar 

  24. Li, Y., J. Popelek, J.-K. Rhee, L. J. Wang, T. Wang, and K. Shum, “Demonstration of fiber-based board-level optical clock distributions,” Proc. 5th International Conference on Massively Parallel Processing using Optical Interconnections (MPPOI’98), Las Vegas, NV, USA, June 15–17, 1998, pp. 224–228.

    Google Scholar 

  25. Boden, N. J., D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic, and W.-K. Su, “Myrinet: a gigabit-per-second local area network,” IEEE Micro, vol. 15, no. 1, pp. 29–36, Feb. 1995.

    Article  Google Scholar 

  26. Bergman, L., J. Morookian, and C. Yeh, “An all-optical long-distance multi-Gbytes/s bitparallel WDM single-fiber link,” Journal of Lightwave Technology, vol. 16, no. 9, pp. 1577–1582, Sept. 1998.

    Article  Google Scholar 

  27. Coldren, L. A., E. R. Hegblom, Y. A. Akulova, J. Ko, E. M. Strzelecka, and S. Y. Hu, “Vertical-cavity lasers for parallel optical interconnects,” Proc. 5th International Conference on Massively Parallel Processing using Optical Interconnections (MPPOI’98), Las Vegas, NV, USA, June 15–17, 1998, pp. 2–10.

    Google Scholar 

  28. Aronson, L. B., B. E. Lemoff, L. A. Buckman, and D. W. Dolfi, “Low-cost multimode WDM for local area networks up to 10 Gb/s,“ IEEE Photonics Technology Letters,” vol. 10, no. 10, pp. 1489–1491, Oct. 1998.

    Article  Google Scholar 

  29. Szymanski, T. H., A. Au, M. Lafrenière-Roula, V. Tyan, B. Supmonchai, J. Wong, B. Zerrouk, and S. T. Obenaus, “Terabit optical local area networks for multiprocessing systems,” Applied Optics, vol. 37, no. 2, pp. 264–275, Jan. 10, 1998.

    Article  Google Scholar 

  30. Krisnamoorthy et al., “The AMOEBA chip: an optoelectronic switch for multiprocessor networking using dense-WDM,” Proc. Massively Parallel Processing using Optical Interconnections (MPPOI’96), Maui, HI, USA, Oct. 27–29, 1996, pp. 94–100.

    Google Scholar 

  31. Pinkston, T. M., M. Raksapatcharawong, and Y. Choi, “WARP II: an optoelectronic fully adaptive network router chip,” Proc. Optics in Computing (OC’98), Brugge, Belgium, June 17–20, 1998, pp. 311–315.

    Google Scholar 

  32. Lund, C., “Optics inside future computers,” Proc. Massively Parallel Processing using Optical Interconnections (MPPOI’97), Montreal, Canada, June 22–24, 1997, pp. 156–159.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Rolim Frank Mueller Albert Y. Zomaya Fikret Ercal Stephan Olariu Binoy Ravindran Jan Gustafsson Hiroaki Takada Ron Olsson Laxmikant V. Kale Pete Beckman Matthew Haines Hossam ElGindy Denis Caromel Serge Chaumette Geoffrey Fox Yi Pan Keqin Li Tao Yang G. Chiola G. Conte L. V. Mancini Domenique Méry Beverly Sanders Devesh Bhatt Viktor Prasanna

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

Jonsson, M. (1999). Fiber-optic interconnection networks for signal processing applications. In: Rolim, J., et al. Parallel and Distributed Processing. IPPS 1999. Lecture Notes in Computer Science, vol 1586. Springer, Berlin, Heidelberg . https://doi.org/10.1007/BFb0098016

Download citation

  • DOI: https://doi.org/10.1007/BFb0098016

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65831-3

  • Online ISBN: 978-3-540-48932-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics