Skip to main content

Self-assembly of oscillatory neurons and networks

  • Neural Modeling (Biophysical and Structural Models)
  • Conference paper
  • First Online:
Foundations and Tools for Neural Modeling (IWANN 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1606))

Included in the following conference series:

Abstract

The activity of rhythmic central pattern generating circuits depends on both the intrinsic properties of neurons and their synaptic interactions. We describe experiments on the development of the stomatogastic nervous system and on its recovery from removal of modulatory inputs that suggest that activity may be important in regulating the intrinsic and synaptic properties of these networks. Our computational studies argue that simple activity-dependent rules in which activity governs the regulation of intrinsic neuronal properties and the strength of inhibitory connections may be sufficient to account for the selfassembly of rhythmic networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marder, E., Calabrese, R.L.: Principles of rhythmic motor pattern generation. Physiol. Rev. 76 (1996) 687–717

    Google Scholar 

  2. Rezer, E., Moulins, M.: Expression of the crustancean pyloric pattern generator in the intact animal. J. Comp. Physiol. A 153 (1983) 17–28

    Article  Google Scholar 

  3. Harris-Warrick, R.M., Marder, E., Selverston, A.I., Moulins, M., (eds.): 1992. Dynamic Biological Networks. The Stomatogastric Nervous System MIT Press, Cambridge.

    Google Scholar 

  4. Harris_Warrick, R.M., Coniglio, L.M., Levini, R.M., Gueron, S., Guckenheimer, J.: Dopamine modulation of two subthreshold currents produces phase shifts in activity of an identified motoneuron. J. Neurophysiol. 74 (1995) 1404–1420

    Google Scholar 

  5. Eisen, J.S., Marder, E.: A mechanism for production of phase shifts in a pattern generator. J. Neurophysiol. 51 (1984) 1375–1393

    Google Scholar 

  6. Marder, E.: From biophysics to models of network function. Annu. Rev. Neurosci. 21 (1998) 25–45

    Article  Google Scholar 

  7. LeMasson, G., Marder, E., Abbott, L.F.: Activity-dependent regulation of conductances in model neurons. Science 259 (1993) 1915–1917

    Article  Google Scholar 

  8. Liu, Z., Golowasch, J., Marder, E., Abbott, L.F.: A model neuron with activity-dependent conductances regulated by multiple calcium sensors. J. Neurosci. 18 (1998) 2309–2320

    Google Scholar 

  9. Siegel, M., Marder, E., Abbott, L.F.: Activity-dependent current distributions in model neurons. Proc. Natl. Acad. Sci. USA 91 (1994) 11308–11312

    Article  Google Scholar 

  10. Bito, H., Deisseroth, K., Tsien, R.W.: Ca2+-dependent regulation in neuronal gener expression. Curr. Opin. Neurobiol. 7 (1997) 419–429

    Article  Google Scholar 

  11. Marder, E., Abbott, L.F., Turrigiano, G.G., Liu, Z., Golowasch, J.: Memory from the dynamics of intrinsic membrane currents. Proc. Natl. Acad. Sci. (USA) 93 (1996) 13481–13486

    Article  Google Scholar 

  12. Turrigiano, G., Abbott, L.F., Marder, E.: Activity-dependent changes in the intrinsic properties of cultured neurons. Science 264 (1994) 974–977

    Article  Google Scholar 

  13. Golowasch, J., Casey, M., Abbott, L.F., Marder, E.: Network stability from activity-dependent regulation of neuronal conductances. Neural Computation in press (1999)

    Google Scholar 

  14. Thoby-Brisson, M., Simmers, J.: Neuromodulatory inputs maintain expression of a lobster motor pattern-generating network in a modulation-dependent state: evidence from long-term decentralization In Vitro. J. Neurosci. 18 (1998) 2212–2225

    Google Scholar 

  15. Golowasch, J., Marder, E.: Proctolin activates an inward current whose voltage dependence is modified by extracellular Ca2+. J. Neurosci. 12 (1992) 810–817

    Google Scholar 

  16. Soto-Treviño, C., Marder, E., Abbott, L.F.: Activity-dependent regulation of inhibitory synapses in an oscillatory neuronal network. in preparation. (1999)

    Google Scholar 

  17. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35 (1981) 193–213

    Article  Google Scholar 

  18. Casasnovas, B., Meyrand, P.: Functional differentiation of adults neural circuits from a single embryonic network. J. Neurosci. 15 (1995) 5703–5718

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira Juan V. Sánchez-Andrés

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marder, E., Golowash, J., Richards, K.S., Soto-Treviňo, C., Miller, W.L., Abbott, L.F. (1999). Self-assembly of oscillatory neurons and networks. In: Mira, J., Sánchez-Andrés, J.V. (eds) Foundations and Tools for Neural Modeling. IWANN 1999. Lecture Notes in Computer Science, vol 1606. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0098155

Download citation

  • DOI: https://doi.org/10.1007/BFb0098155

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66069-9

  • Online ISBN: 978-3-540-48771-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics