Abstract
Experimental data recorded in cat in vivo offer a new picture of the cuneate nucleus. Classically defined as a simple relay station, the cuneate nucleus is currently seen as a fundamental stage in somatosensory information processing. Intracellular and extracellular recordings have revealed a complex circuitry established by cuneothalamic cells, interneurons and afferent fibers from the sensorimotor cortex. As a result of electrophysiological work, some circuits have been hypothesized in order to explain the data. In this paper we present a computational model designed and developed in order to test the validity of the proposed circuit in [15]. The results of the computer simulations support the predictions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Andersen, P., Eccles, J. C., Schmidt, R. F., Yokota, T.: Depolarization of Presynaptic Fibers in the Cuneate Nucleus. Journal of Neurophysiology. Vol. 27 (1964) 92–106
Berkley, Karen J., Badell, Richard J., Blomqvist, A., Bull, M.: Output Systems of the Dorsal Column Nuclei in the cat. Brain Research Review. Vol. 11 (1986) 199–225
Canedo, A.: Primary motor cortex influences on the descending and ascending systems. Progress in Neurobiology. Vol. 51 (1997) 287–335
Canedo, A., Martinez, L., Mariño, J.: Tonic and bursting activity in the cuneate nucleus of the chloralose anesthetized cat. Neuroscience. Vol. 84 2 (1998) 603–617
Coulter, D. A., Huguenard, R. J., Prince, D. A.: Calcium currents in rat thalamocortical relay neuron kinetic properties of the transient low-threshold current. Journal of Physiology (London). Vol. 414 (1989) 587–694
Fyffe, Robert E., Cheema, Surindar S., Rustioni, A.: Intracelular Staining Study of the Feline Cuneate Nucleus. I. Terminal Patterns of Primary Afferent Fibers. Journal of Neurophysiology. Vol. 56 5 (1986) 1268–1283
Hines, M.: A program for simulation of nerve equations with branching geometries. International Journal of Biomedical Computation. Vol. 24 (1989) 55–68
Hodgkin, A., Huxley, A., Katz, B.: Measurements of current-voltage relations in the membrane of the giant axon of Loligo. Journal of Physiology (London). Vol. 116 (1952) 424–448
Huguenard, J. R., Coulter, D. A., Prince, D. A.: Developmental changes in Na+ conductances in rat neocortical neurons: appearance of a slowly inactivating component. J. of Neurophysiology. Vol. 59 (1988) 778–795
Huguenard, J. R., Coulter, D. A., Prince, D. A.: A Fast Transient Potassium Current in Thalamic Relay Neurons: Kinetics of Activation and Inactivation. Journal of Neurophysiology. Vol. 66 (1991) 1304–1315
Jack, J. J. B., Redman, S. J.: The propagation of transient potentials in some linear cable structures. J. of Physiology (London). Vol. 215 (1971) 283–320
Kay, A. R., Wong, R. K. S.: Calcium current activation kinetics in isolated pyramidal neurons of the CA1 region of the mature guinea-pig hippocampus. Journal of Physiology (London). Vol. 392 (1987) 603–616
Kuypers, H. G. J. M., Tuerk, J. D.: The distribution of the cortical fibers within the nucleic cuneatus and gracilis in the cat. J. Anat. Lond. Vol. 98 (1964) 143–162
Mariño, J., Martínez, L., Canedo, A.: Coupled slow and delta oscillations between cuneothalamic and thalamocortical neurons in the chloralose anesthetized cat. Neuroscience Letters. Vol. 219. (1996) 107–110
Mariño, J., Martínez, L., Canedo, A.: Sensorimotor integration at the dorsal column nuclei. News In Physiological Sciences. (In Press)
McCormick, David A., Huguenard, John R.: A Model of the Electrophysiological Properties of Thalamocortical Relay Neurons. Journal of Neurophysiology. Vol. 68. 4 (1992) 1384–1400
McCormick, D. A., Pape, H. C.: Properties of a hyperpolarization-activated cation current and its rate in rhythmic oscillations in thalamic relay neurons. Journal of Physiology (London). Vol. 431. (1990) 291–318
Rall, W.: Theoretical significance of dendritic tree for input-output relation. In Neural Theory and Modeling. Stanford University Press, Stanford. Reiss, R. F. (Ed.) (1964) 73–97
Rustioni, A. and Weinberg, R. J.: The somatosensory system. In Handbook of Chemical Neuroanatomy. Vol. 7: Integrated systems of the Cns, part II. Elsevier: Amsterdam. Björklund, A., Hökfelt, T., and Swanson, L. W. (Eds.) (1989) 219–320
Sánchez E., Barro, S., Canedo, A., Martìnez, L., Mariño, J.: Computational simulation of the principal cuneate projection neuron. Workshop Principles of Neural Integration: Instituto Juan March de Estudios e Investigaciones (1997). Madrid.
Sánchez, E., Barro, S., Canedo, A., Martìnez L., Mariño, J.: A computational model of cuneate nucleus interneurons. Eur. J. Neurosci. Vol. 10. 10 (1998) 402
Walberg, F.: The fine structure of the cuneate nucleus in normal cats and following interruption of afferent fibres. An electron microscopical study with particular reference to findings made in Glees and Nauta sections. Expl. Brain. Res. Vol. 2. (1966) 107–128
Yamada, Walter M., Koch, C., Adams, P.: Multiple Channels and Calcium Dynamics. In Methods in Neuronal Modeling. MIT Press. Koch, C. and Segev I. (Eds). (1989) 20–45
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sánchez, E., Barro, S., Mariño, J., Canedo, A., Vázquez, P. (1999). Modelling the circuitry of the cuneate nucleus. In: Mira, J., Sánchez-Andrés, J.V. (eds) Foundations and Tools for Neural Modeling. IWANN 1999. Lecture Notes in Computer Science, vol 1606. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0098162
Download citation
DOI: https://doi.org/10.1007/BFb0098162
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66069-9
Online ISBN: 978-3-540-48771-5
eBook Packages: Springer Book Archive