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A b s t r a c t .  We examine the effects of degree of balance between in- 
hibitory and excitatory random synaptic inputs, and of positive correla- 
tion between the inputs on the mean and variability of the output  of the 
classical Hodgkin-Huxley (HH) model for squid giant axon, using com- 
puter  simulation. The mean interspike interval (ISI) and the coefficient 
of variation of ISI change little as the degree of balance changes, unlike 
the leaky integrate-and-fire model, frequently used in stochastic network 
modelling as an approximation to more biophysically based models. Low 
correlations (up to about 0.1) between 100 excitatory inputs each firing 
at 100 Hz reduce the mean(ISI) to below a third of its value when the 
inputs are independent,  and CV by a factor of 5 from a near-Poisson 
range to one associated with regular firing. 

1 Introduction 

In vivo cell recordings demonstrate that  many neurones fire irregu- 
larly. For example, the coefficient of variation of interspike intervals 
of neurones in the visual cortex of the monkey is greater than 0.5[23]. 
A comparison between in vitro and in vivo experiments supports the 
assertion that  the irregularity results from random synaptic input 
from other neurones, both inhibitory and excitatory [11]. How the 
output variability relates to the characteristics of random synaptic 
input is a major theme in computational neuroscience [13, 24]. A bet- 
ter understanding of the origins of apparent randomness in neuronal 
firing will help us to clarify general principles underlying neuronal 
circuitry [17, 18, 20-22]; and to assess whether rate or timing coding 
is the fundamental mode of information transmission [9, 12, 21]. 
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Many neurons fire irregularly when driven weakly by random 
synaptic input, and quite regularly when driven very hard. In be- 
tween these extremes, neurons vary in their response to random in- 
put. In previous work [2, 5], we have considered how the degree of 
balance and positive correlation between synaptic inputs affect the 
mean level and variability of firing of the leaky integrate-and-fire 
(I&F) model, with and without reversal potentials. CV falls in the 
physiological range (between 0.5 and 1) for a range of values of r, 
the ratio of the frequencies of inhibitory to excitatory input, the 
range becoming wider when reversal potentials are included. Here 
we demonstrate that  the behaviour of the classical Hodgkin-Huxley 
model of squid giant axon is very different in that  it can fire quite 
irregularly over the complete range of degrees of balance between in- 
hibition and excitation, unlike the leaky I&:F model, which generally 
fires regularly when inhibitory inputs are absent. 

We also explore how values of the mean and coefficient of vari- 
ation of ISI (the latter abbreviated to CV in the remainder of the 
paper) change as the simultaneous synaptic inputs become positively 
correlated. [30] obtained average correlation coefficients between ob- 
served spike counts in simultaneously recorded neurons in the middle 
temporal visual area of 0.12. We therefore consider as an example 
the case of p=100 excitatory inputs each of 100 Hz with a maximum 
correlation of 0.1, and q -- rp inhibitory inputs, for r between 0 and 
1; and we demonstrate that  as the pairwise correlation between these 
inputs increases to 0.1, the mean ISI falls to approximately a third 
of its values under independence, and CV falls to about one fifth of 
its value under independence. In other words, the neuron fires much 
faster and much more regularly. 

2 M o d e l s  

2.1 N e u r o n a l  a n d  i n p u t  m o d e l  

The HH model is 

CdV = Is~n + g ~ n 4 ( V -  VK)dt + gNam3h(V - VNo)dt + g L ( V -  VL)dt 
(1) 

where Isyn is the synaptic current, as described next. The model 
parameters and remaining equations are as in [10]. 



199 

The model neurons were subjected to input from p excitatory 
synapses each following a Poisson process of rate AE, and q inhibitory 
synapses each with Poisson rate/~i. For both model simulations,the 
effect of an EPSP/IPSP is an instantaneous perturbation of mem- 
brane potential of magnitude a = 0.5mV. 

To examine the effect of departures from exact balance in the 
case of independent inputs, one simulation was performed for each 
combination ofp and r taken from the following: p = 25, 50, 75, 100, 
150, 200 with AE = AI= 100 Hz, and r = q/p = O, 0.1, 0.2 ... 1.0. 

2.2 C o r r e l a t e d  i n p u t s  a n d  r e - exp re s s ion  of  the i r  e f fects  as 
a W i e n e r  P r o c e s s  

First, we use martingale decomposition to approximate the Poisson 
synaptic input in a form more convenient for computer simulation. 
The decompositions of the excitatory and inhibitory components of 
the synaptic input, 

I~y. = dealt ) + dIi(t) 

are 
dE~(t) N AEdt + k/-~EdBE(t) 

and 
dI~(t) N Atdt + ~/~idBl( t  ) 

where B2(t)  and B[(t) are standard Brownian motions. Thus synap- 
tic input can be approximated by 

p q I I8~,, = a ~i=1 A Edt -- b ~[=t A1dt + a V~E ~ = t  dB~ (t) - bv/~x ~,=t dBi (t) 
(2) 

Since the sum of Brownian motions also forms a Brownian motion 
we can rewrite the above equation 

l~u,~ = (ap.k~ - bqAi)dt 
+r ~,~=l EP=I cE(i,J) + b2~t ~,~=l Eq=l d ( i , j )dB( t )  

= (apAE -- bqAt)dt 
+ Ca2pAE + b2q ~, + a2AE F,i~j cE( i, J) + b2)~, E,~j c' (i, j)dB(t) 

(3) 



3 R e s u l t s  

These approximations were used in the simulations of correlated 
inputs. The approximation accuracy has been shown to be adequate 
for the present purposes in results to be reported elsewhere [3]. On 
the other hand, direct simulation of the Poisson inputs was used in 
the results in Figure 1, dealing with independent inputs. The results 
for c=0 in Figure 2 can therefore be directly compared with those 
for p=100 in Figure 1, to assess tile accuracy of the approximation; 
the results are quite comparable. 
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F i g .  1. R e s p o n s e  of a H H  n e u r o n  s u b j e c t  to  p exc i t a to ry  Poisson i n p u t s  each of  100Hz 7 
a n d  q ---- r p  i n h i b i t o r y  i n p u t s  w i th  E P S P  size ----- I P S P  size -= 0.5my. A . m e a n ( I S I )  vs  r 
for each va lue  of p . B. CV(ISI )  vs  r for each va lue  of p. Key: f rom top  to  b o t t o m  of  
each  f rame:  p=75,100,150,200,250,300 

3.1 Effects of degree of b a l a n c e  

Very few or no spikes were obtained at the lowest numbers of exci- 
tatory neurones, p - -  25 ,  50, for all values of r, so only the results for 
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higher values of p - for which reliable statistics could be obtained - 
are reported here. Mean ISI varies between l~cand 110 ms (see Fig 
(1)), which are within the physiological range. For p ~ 75 and 100, 
CV(ISI) is approximately independent of r taking values of about 
0.8 and 0.7 respectively (Figure 1A). For higher values of p, CV(ISI) 
is positively correlated with r, taking values as low as 0.1 for p = 300 
and r -- 0. This appears to occur because the drive to the neuron is 
so high that the refractory period becomes a significant portion of 
the mean interspike interval. Once an effective refractory period of 
12 ms is subtremted from each interspike interval, CV(ISI) is approx- 
imately unity, the expectation for completely Poissonian output. 

The behaviour of I&F neurons in response to stochastic synaptic 
input has been described elsewhere ([2, 4-6]). For low levels of input 
(viz p = 20), significant output only occurs for low levels of inhibitory 
input, r = 0.0 - 0.2. Mean (ISI) takes a very wide range of values 
as r is varied from the order of 6-15 ms when r : 0 .1  to 1 second 
when 0.7 < r < 0.9 for p taking higher values i.e. between 50 and 
100 (results not shown here). By contrast, mean (ISI) for the HH 
model shows a much weaker correlation with r of lower slope; i.e. 
inhibitory input has a much greater impact on the firing rate of the 
I&F neuron than the HH neuron. For 50 <_ p < 100, CV of the 
I&F neuron is in the near Poisson range for r > 0.5 approximately 
, falling substantially to near 0.25, as r > 0. For a wide range of 
values of r ,  CV thus takes values more typical of regular firing. For 
the HH neuron, on the other hand, CV is independent of r for p = 75 
and 100; and for higher values of p, CV only falls as a result of the 
neuron's refractory period. 

3.2 Pos i t i ve  c o r r e l a t i o n  b e t w e e n  i n p u t s  

For all the simulations reported here, the correlations between the 
excitatory inputs was the same as that between the inhibitory in- 
puts, so CE ----- CI  ---- C. Moving from independence to very slight 
positive correlation (c -- 0.01), has the effect of reducing CV sub- 
stantially (see Fig(2)) from about 0.7 to about 0.5, approximately 
independently of the value of r. As correlation is increased further, 
CV falls further so that, for 0.07 < c < 0.10, CV is close to 0.25, 
which is the range consistent with quite regular firing. There are 
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Fig .  2. Mean firing t ime(A) and CV(B) of the ISI output  of the HH model subject  
to p ~ 100 excitatory EPSPs arriving according to Poisson processes, with EPSPs 
of ampli tude 0.5 mV, and q = rp  inhibitory inputs  also Poisson distr ibuted,  with 
con'elation, c, between the 100 excitatory (and 100r inhibitory) processes lying between 
0 and 0.1, as indicated in A. The model is simulated using the approximation to the 
Poisson input  as described in the  text.  

also substantial  reductions in mean(ISI)  as c is increased over this 
range from between 30 msec when r = 0 to 60 msec when r = 1 for 
independence,  to between 17 and 19 msec for r -~ 0.1. Again there is 
a great change for very slight positive correlation; increasing r from 
0 to 0.01 involves a reduction in mean(ISI)  of about  one third over 
the whole range of r. 

4 Discuss ion  

Biological experiments  indicate tha t  the interspike interval CV of 
many neurons is frequently greater  than  0.5, but  how and when cells 
adjust  their  synaptic  inputs  so tha t  their  outputs  take on an appear-  
ance broadly comparable  to tha t  of a Poisson process is unknown. 
Many analytical ,  numerical  and simulation studies have a t t empted  
to predict  when this would happen for the I&F models [8, 14, 15, 27, 
23-26, 29]: one general conclusion is tha t  firing becomes more  regular 
as the frequency of inhibi tory inputs falls to zero. In this paper,  we 
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show that  for the HH model, changes in the relative frequency of in- 
hibitory input have little effect on CV when inputs are independent, 
but that  very slight departures from independence involving positive 
correlation between input streams can change the CV very substan- 
tially. The reason why small correlations have such a profound effect 
is that  there are p(p - 1) covariance terms in the expression for Isyn 
in equation Eq. (3), so that  the covariance contribution increases 
much faster than p, even though the multiplier of p ( p -  1), i.e. the 
correlation, is rather small. Furthermore, the effect of positive cor- 
relation on CV is qualitatively different in its effect for the HH and 
leaky I&F models. In [7], we demonstrate that  positive correlation 
increases CV for the leaky I&F model, unlike as here for the HH 
model, decreasing it. 

Considering the implications of these findings for neuronal func- 
tioning especially with reference to coding, changing the correlation 
between inputs slightly might well be easily accomplished by a neu- 
ral network. Our present results suggest that  such relatively minor 
changes - of the order of magnitude of those found in visual cor- 
tex [30] = can have major effects on the neuronal output, the effects 
depending strongly on the details of the neuronal mechanism, as 
demonstrated here and in [7]. This lends support to the hypothesis 

that  population coding in networks composed of different neuronal 
types might well be an important communication mode in neuronal 
systems. 
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