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A b s t r a c t .  We examine the effects of changing the coefficient of varia- 
tion (CV) of the inter-stimulus interval on the CV of the output inter- 
spike interval (ISI), using constant magnitude, supra-threshold point- 
process stimuli of the membrane potential variable in the FitzHugh- 
Nagumo model. The coefficient of variation of the input is changed within 
the context of a displaced exponential distribution. We find that for some 
values of mean inter-stimulus interval, CV of ISI has an inverse relation- 
ship with input coefficient of variation, whereas for other mean stimula- 
tion rates, CV of ISI increases with input coefficient of variation. Over a 
wide range of input regularity CV of ISI is approximately constant, and 
is less than 0.4. 

1 Introduction 

The FitzHugh-Nagumo (FHN) model is a simple model of neuronal 
excitability which retains much of the significant physiological be- 
haviour of the Hodgkin-Huxley model. The behaviour of the ex- 
citable FHN model has been shown to be similar to that  of living 
pacemakers I13], and its response to regular periodic forcing has been 
well researched I1, 4, 12, 7]. Motivated by the regularity of pacemaker 
systems within the endocrine system [9], in this paper we investigate 
the behaviour of the FitzHugh-Nagumo model when subjected to 
stochastic point process input which is above the threshold required 
to cause an output spike from the FHN model. We find parameter 
regions of relative invariance of the output inter-spike interval (ISI) 
and other regions in which the behaviour is counter-intuitive, involv- 
ing an inverse relationship between input and output variability. 
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2 M e t h o d s  

2.1 Model  

Following Brown et al. [2], we use a version of the space c lamped 
FHN model: 

d v  
d--~- --~ ~ [ - v ( ~ )  - o / ) ( v  - V m a x )  - ] ~ l W ]  + I s y n a p t i c  

d w  
dt = 5(k2v - / ~ w )  

For the simulations presented here Vm~x = 1.0, a = 0.2, "/ = 200, 
5 = 0.9. We also set kl = k2 = 1.0. /3 is varied between 1.0 and 5.0. 
Isy, aptic represents the applied st imulation.  

We define a spike to have occurred when v crosses a threshold 
(set here to 0.7) in an upward direction, provided a min imum interval 
(0.1 t ime units (TU)) has elapsed since the last threshold crossing. 

2.2 Appl ied  stochast ic  s t imulat ion 

The model  uses instantaneous stochastic st imulations in v, arriving 
at r andomly  varying intervals A]ti consisting of a fixed refractory 
period of length r, followed by a period which follows a negative 
exponential  distr ibution,  mean T. Thus each Ati follows a displaced 
negative exponential  distr ibution,  with displacement w and overall 
mean r + w. We define: 

T 
P s t o c h  - -  - -  

r -~- T 

Thus, Pstoch is the coefficient of variation of inter-st imulus inter- 
val, and At  is the mean inter-stimulus interval. Pstoch = 0 corresponds 
to regular input,  Pstoch - ~  1 to Poissonian input.  Per turbat ions  are 
delivered with constant  magni tude  Avi = 0.35, which is chosen to 
be super-threshold (i.e. Avi is substantial ly greater than c~). 
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2.3 Simulations 

The simulation program was written in FORTRAN, using the NAG 
numerical libraries, and the equations were solved using a forward 
communication routine for integrating stiff systems. Simulations were 
run for 300 or 500 time units, after an initial transient of 5 time units 
which was discarded for the analyses presented here. 

3 R e s u l t s  

3.1 Changes in the mean inter-spike interval 

Example plots of v are shown in Fig. 1 for three values of Pstoch and 
two values of At. For Pstoch = 0.0 and At = 0.1, we observe many 
small perturbations in v, which are sub-threshold. Each of these cor- 
responds to one input stimulation, and their frequency has the effect 
of constantly elevating w. This produces what has been termed a 
'dynamic equilibrium' I1]; the perturbations accumulate so fast that 
the inhibitory variable, w, has insufficient time to decay between 
stimulations and effectively increases the threshold for spiking. The 
move away from the dynamic equilibrium toward more regular spik- 
ing can be seen in the bifurcation diagram (Fig. 2) which also shows 
that both At = 0.3,0.4 are regions in which one output pulse is 
generated for every three input pulses. 

We can obtain a more condensed representation of some of these 
results by plotting mean ISI against Pstoch, as given in Fig. 3. We 
observe that mean ISI is greatest for low Pstoch and low At (=0.1), 
and increasing either of these parameters allows the system to spike 
more frequently. A detailed description of how mean ISI changes as 
the input is randomly varied is presented in [6]. 

3.2 Changes in output  regularity 

We also calculated CV of ISI, and present graphs showing how it 
changes with At  and Pstoch (see Fig. 4). For At > 0.3, we see output 
irregularity rises gently with Pstoch. However for At = 0.1, we observe 
the opposite relation. 

Examination of the v vs t graphs for At = 0.1 (Fig. 1, b) shows 
that the stimulus causing each output spike is often preceded by a 



224  

(a) 

1.2 ' ' ' 
0.8 
0.4 
0.0 

- 0 . 4  ~ "  ~ ~ ~ ~ ~ ~ ~ ~"""" """"""""""""""""""""  """" ~"""""""" " i"""""" "" : """ : : :  ~: ~ ~: ~ t ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~: : : : : : : : ; : : : ; :  i : " " " : " """  """" "; """ "":"" "~" : " : : : : : : : : : : : ; : : : : : :  [" :~"::" " : :"""""""""  ""; :"""""" """ :"""""""""""  """" ~ ~ 

20 25 30 35 40 

(b) 

1,2 1 1 1" 

0.8 
0.4 
0.0 

-0,4 
20 25 30 35 40 

(c) 

1.2 ' ' ' 
0.8 
0.4 
0.0 

-0.4 
2O 25 3O 35 4O 

(d) 

1.2 
0.8 
0,4 
0.0 

-0.4 
2O 25 30 35 40 

(e) 

1.2 
0,8 
0.4 
0.0 

-0.4 
20 25 30 35 40 

(f) 

1.2 
0.8 
0.4 
0.0 

-0.4 
20 25 30 35 40 

F i g .  1. E x a m p l e  s i m u l a t i o n s  of  t h e  m o d e l  s h o w i n g  v vs. t for /met  = 

0 . 0 ,  Vma x = 1.0, a = 0.20, /3  = 1, 3' = 200, 5 = 0.9, kt = 1.0, k2 = 1.0, 

a n d  (a) Psto~h = 0.00, At = 0.1, (b) Pstoch = 0 . 3 5 ,  A t  = 0 . ] ,  (C) 

Pstoch = 0 . 7 5 ,  A t  = 0 . 1 ,  (d) Pstoch = 0 . 0 0 ,  A t  = 0 . 3 ,  (e) Pstoch = 0 . 3 5 ,  

At = 0.3, a n d  (f) Pstoch = 0 . 7 5 ,  A t  = 0 .3 .  Plus  s igns i n d i c a t e  i n p u t  
s t i m u l a t i o n s .  
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Fig. 2. Bifurcation diagram of v as At is varied. Other parameters 
as Fig. 1 Simulations were run for 30TU before being sampled for 
30TU 
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Fig. 3. Relationship between mean output inter-spike interval and 
Pstoch for different At. Error bars show + 1 SE. Other parameters 
as Fig. 1 
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Fig.  4. Relationship between coefficient of variation of output inter- 
spike interval and Pstoch for different At. Error bars show 4- 1 SE. 
Other parameters as Fig. 1 

relatively long period without any input stimulations. This allows 
the system to recover sufficiently to spike at the next stimulus. As 
the random potions of each inter-stimulus interval are independent 
negative exponentially distributed random variables, the occurrences 
of values greater than the threshold which permit a spike to occur, 
in effect, form a series of binomial trials. However, as firing becomes 
more frequent, the absolute refractory period between spikes estab- 
lishes a regulatory effect, and the output is distributed as a fixed 
refractory period, followed by the outcome which is distributed as 
the first success in a sequence of binomial trials i.e. a geometric 
distribution. This explains the shape of the ISI histogram (Fig 5, 
At = 0.1 ). The ISis are skewed toward the minimum, and tail off 
approximately as a geometric distribution. 

These simulation were repeated over a wide range of parame- 
ter space (not presented). Within the excitatory region, the results 
presented here are robust and the behaviours described are repeated. 

4 D i s c u s s i o n  

Previous studies have shown that the regularly stimulated FHN 
model exhibits complex relationship between input and output spike 
frequency [1, 13], and then that introducing and increasing a ran- 
dom component into the inter-stimulus interval and stimulus mag- 
nitude I5, 2] changes the relationship between mean ISI and inter- 
stimulus interval. In this paper, we extend these results by examin- 
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Fig .  5. Outpu t  inter-spike interval histograms for the model for: (a) 
Pstoch = 0.35, At = 0.1, (different scale) (b) pstoch = 0.75, At = 0.1, 
(c) Pstoch = 0.35, At = 0.3, and (d) Pstoch = 0.75, At = 0.3. Other  
parameters  as Fig. 1. Graphs show percentage of intervals falling into 
each bin based on sample sizes of at least 20,000. 

ing the relationship between the regularity or otherwise of the input  
stimuli and the degree of regulari ty of the output  spikes. 

Perhaps the most striking result is the abili ty of a simple neuron 
to respond regularly to irregular input,  over a wide region of parame- 
ter space. Away from the dynamic equilibrium, even as input  tended 
toward a pure Poissonian distribution, the output  remains regular, 
with CV < 0.4. This result is repeatable within a wide region of pa- 
rameter  space, and is robust even when variation is introduced into 
the s t imulat ion magni tude (results not presented). The source of 
the regularity is likely to be the refractory period, which is approxi- 
mate ly  3 t imes the length of a spike, or between 2.5 (At = 0.4) and 10 
(At = 0.1) t imes the period between input  stimulations. Thus for a 
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significant proportion of time, the system is in an effective refractory 
state; unexcitable even by the applied supra-threshold stimulations. 
A beat-skipping phenomenon [11] can be clearly observed in the his- 
tograms. The importance of this in contributing to the irregularity of 
the output is difficult to determine, though it undoubtedly increases 
output CV. 

The original motivation for this work was further analysis of a de- 
scriptive network model of GnRH release [2], in which GnRH neurons 
interact with a reciprocally connected network of inhibitory GABA 
neurons. Output from the GnRH system is know to be pulsatile, and 
extremely regular. The present work suggests one way in which an 
inhibitory network can greatly increase the regularity of the output 
of a system. Experimental measures of pulse regularity are difficult, 
due to the wide distribution of the GnRH neurons throughout the 
pre-optic area of the brain which precludes accurate and prolonged 
measurement of the output of the system. However, inspection of 
available results [14, 3] suggests that pulse regularity changes signif- 
icantly during the estrus cycle, and may provide important clues to 
changes in the pulse generator. The results presented are particu- 
larly significant in view of recent work which suggests that cultured 
GnRH neurons themselves may pulse spontaneously with great ir- 
regularity [8]. 

Neuroendoerinology offers many examples of neurons that  are ac- 
tive in bursts [10[, and our work in modelling these systems partially 
motivates the unusual, supra-threshold stimulations chosen in this 
paper. However, it is not impossible that a neuron may receive tightly 

synchronised inputs from connecting local neurons, which would be 
equivalent to a single, supra-threshold input. We intend to extend 
the input model to determine whether these results are repeatable 
for an input received as a burst of sub-threshold EPSPs within the 
physiological range. 
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