Skip to main content

Integrate-and-fire model with correlated inputs

  • Neural Modeling (Biophysical and Structural Models)
  • Conference paper
  • First Online:
Foundations and Tools for Neural Modeling (IWANN 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1606))

Included in the following conference series:

  • 518 Accesses

Abstract

We consider how correlated inputs affect the variability of cellular output of the integrate-and-fire model with or without reversal potentials. For both models the variability efferent spike trains measured by coefficient of variation of the interspike interval (abbreviated to CV in the remainder of the paper) is a nondecreasing function of input correlation. For the set of physiologicla parameters used in our simulations: when the correlation coefficient is greater than 0.09, the CV of the integrate-and-fire model without reversal potentials is always above 0.5, no matter how strong the inhibitory inputs; when the correlation coefficient is greater than 0.06, CV for the integrate-and-fire model with reversal potentials is always above 0.5, independent of the strength of the inhibitory inputs. A novel method to estimate the distribution density of the first passage time of the integrate-and-fire model is developed and under a given condition on correlation coefficients we find that correlated Poisson processes can be decomposed into independent Poisson processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeles M. (1982). Local Cortical Circuits: An Electrophysiological Study, Springer-Verlag: New York.

    Book  Google Scholar 

  2. Abeles M. (1990). Corticonics, Cambridge Univ. press: Cambridge, UK.

    Google Scholar 

  3. Abbott L.F., Varela J.A., Sen K., and Nelson S.B. (1997). Synaptic depression and cortical gain control, Science 275, 220–223.

    Article  Google Scholar 

  4. Brown D., and Moos F. (1997). Onset of bursting in oxytocin cells in suckled rats. J. of Physiology 503, 652–634.

    Article  Google Scholar 

  5. Brown D., and Feng J. (1999) Is there a problem matching model and real CV(ISI)? Neurocomputing (in press).

    Google Scholar 

  6. Feng, J. (1997), Behaviours of spike output jitter in the integrate-and-fire model. Phys. Rev. Lett. 79 4505–4508.

    Article  Google Scholar 

  7. Feng, J. (1999). Origin Of Firing Variability Of The Integrate-and-fire Model Neurocomputing (in press).

    Google Scholar 

  8. Feng J., and Brown D. (1998). Spike output jitter, mean firing time and coefficient of variation. J. of Phys. A: Math. Gen., 31 1239–1252.

    Article  MATH  Google Scholar 

  9. Feng J, and Brown D. (1998). Impact of temporal variation and the balance between excitation and inhibition on the output of the perfect integrate-and-fire model. Biol. Cybern. 78 369–376.

    Article  MATH  Google Scholar 

  10. Feng J., and Brown D. (1998). Impact of correlated inputs on the output of the integrate-and-fire model (submitted).

    Google Scholar 

  11. Feng J., and Brown D. (1998). Coefficient Of Variation Greater Than. 5 How And When? Biol. Cybern. (accepted).

    Google Scholar 

  12. Feng, J., Lei, G., and Qian, M. (1992). Second-order algorithms for SDE. Journal of Computational Mathematics 10: 376–387.

    MathSciNet  MATH  Google Scholar 

  13. Harris C.M., and Wolpert D.M. (1998). signal-dependent noise determines motor planning. Nature 394 780–784.

    Article  Google Scholar 

  14. Konig P., Engel A.K., Singer W. (1996) Integrator or coincidence detector? The role of the cortical neuron revisited. TINS 19, 130–137.

    Google Scholar 

  15. Marsalek P., Koch C., and Maunsell J. (1997). On the relationship between synaptic input and spike output jitter in individual neurones. Proceedings of the National Academy of Sciences U.S.A. 94 735–740.

    Article  Google Scholar 

  16. Mattews P.B.C. (1996). Relationship of firing intervals of human motor units to the trajectory of post-spike after-hyperpolarization and synaptic noise. J. of physiology 492, 597–628.

    Article  Google Scholar 

  17. Mainen Z.F., and Sejnowski, T.J. (1995). Reliability of spike timing in neocortical neurones. Science 268, 1503–1506.

    Article  Google Scholar 

  18. Musila M., and Lánský P. (1994). On the interspike intervals calculated from diffusion approximations for Stein’s neuronal model with reversal potentials. J. Theor. Biol. 171, 225–232.

    Article  Google Scholar 

  19. Ricciardi, L.M., and Sato, S. (1990), Diffusion process and first-passage-times problems. Lectures in Applied Mathematics and Informatics ed. Ricciardi, L.M., Manchester: Manchester University Press.

    Google Scholar 

  20. Sejnowski T. J. (1998). Neurobiology-making smooth moves. Nature 394 725–726.

    Article  Google Scholar 

  21. Sheth B.R., Sharma J., Rao S.C., and Sur M. (1996), Orientation maps of subjective contours in visual cortex. Science 274 2110–2115.

    Article  Google Scholar 

  22. Softky W., and Koch C. (1993). The highly irregular firing of cortical-cells is inconsistent with temporal integration of random EPSPs, J. Neurosci. 13 334–350.

    Google Scholar 

  23. Shadlen, M.N., and Newsome W.T. (1994). Noise, neural codes and cortical organization, Curr. Opin. Neurobiol. 4, 569–579.

    Article  Google Scholar 

  24. Thomson, A.M. (1997), Activity-dependent properties of synaptic transmission at two classes of connections made by rat neocortical pyramidal. Jour. of Physiology 502, 131–147.

    Article  Google Scholar 

  25. Tuckwell H. C. (1988), Stochastic Processes in the Neurosciences. Society for industrial and applied mathematics: Philadelphia, Pennsylvania.

    MATH  Google Scholar 

  26. Wilbur W.J., and Rinzel J. (1983), A theoretical basis for large coefficient of variation and bimodality in neuronal interspike interval distributions. J. theor. Biol. 105, 345–368.

    Article  Google Scholar 

  27. Zohary, E., Shadlen M.N., and Newsome W.T. (1994), Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370 140–143.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira Juan V. Sánchez-Andrés

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Feng, J. (1999). Integrate-and-fire model with correlated inputs. In: Mira, J., Sánchez-Andrés, J.V. (eds) Foundations and Tools for Neural Modeling. IWANN 1999. Lecture Notes in Computer Science, vol 1606. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0098181

Download citation

  • DOI: https://doi.org/10.1007/BFb0098181

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66069-9

  • Online ISBN: 978-3-540-48771-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics