Skip to main content

A new input-output function for binary hopfield neural networks

  • Neural Modeling (Biophysical and Structural Models)
  • Conference paper
  • First Online:
Foundations and Tools for Neural Modeling (IWANN 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1606))

Included in the following conference series:

Abstract

We present a new input-output function of the binary Hopfield neural network operating in a sequential mode and its application for solving combinatorial optimization problems. From convergence theorem for the binary network, we obtain the correct input-output function that satisfies the convergence conditions for any value of the self-conections. We also present performance comparison of different input-output functions through the N-queens problem. Our simulation results show that with our input-output function the network always reaches the global minimum in this problem. However, with McCulloch-Pitts or hysteresis McCulloch-Pitts functions the network is trapped in local minima.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. J. Hopfield and D. W. Tauk, “Neural computation of decisions in optimization problems”, Biol. Cybern., vol. 52, 1985, pp. 141–152.

    MATH  Google Scholar 

  2. J. J. Hopfield, “Neural Networks and physical systems with emergent collective computational abilities” in Proc. Ac. Academy Sci. USA, vol. 79, 1982, pp. 2554–2558.

    Article  MathSciNet  Google Scholar 

  3. Y. Takefuji, K. C. Lee, “An artificial hysteresis binary neuron: a model supressing the oscillatory behaviors of neural dynamics”, Biol. Cybern., vol. 64, 1991, pp. 353–356.

    Article  Google Scholar 

  4. Y. Takefuji, K. C. Lee, “Artificial neural networks for four-colouring map problems and K-colorability problems”, IEEE Trans. Circuits Syst., vol. 38, 1991, pp. 326–333.

    Article  Google Scholar 

  5. Y. Takefuji, “Neural Network Parallel computing”, Kluwer Academic Publishers, 1992.

    Google Scholar 

  6. N. Funabiki, Y. Takenaka, S. Nishikawa, “A maximum neural network approach for N-queens problem”, Biol. Cybern., vol. 76, 1997, pp. 251–255.

    Article  MATH  Google Scholar 

  7. M. Ohta, A. Ogihara, K. Fukumaga, “Binary neural network with self-feedback and its application to N-queens problem”, IEICE Trans. inf. & syst., vol. E77-D, no. 4, 1994, pp. 459–465.

    Google Scholar 

  8. Mandzink, J., “Solving the N-queens problem with a binary Hopfield-type network”, Biol. Cybern., vol. 72, 1995, pp. 439–445.

    Article  Google Scholar 

  9. Sun, Y., “A generalized updating rule for modified Hopfield neural network for quadratic optimization”, Neurocomputing, vol. 19, 1998, pp. 133–143.

    Article  Google Scholar 

  10. M. Peng, N.k. Gupta, A.F. Armitage, “An investigation into the improvement of local minima of the Hopfield network”, Neural Networks, vol. 9, 1996, pp. 1241–1253.

    Article  Google Scholar 

  11. M. Tateishi, S. Tamura, “Comments on ‘Artificial neural networks for four-colouring map problems and K-colorability problems”, IEEE Trans. Circuits Syst. I: Fundamental Theory Applical., vol. 41, 1994, pp. 248–249.

    Article  Google Scholar 

  12. L. Wang, “Discrete-time convergence theory and updating rules for neural networks with energy functions”, IEEE Trans. Neural Networks, vol. 8, 1997, pp. 445–447.

    Article  Google Scholar 

  13. C. K. Cheng, T. Lee, “On the convergence of Neural Network for higher order programming”, Proc. of International Joint Conference on Neural Networks, 1993, pp. 1507–1511.

    Google Scholar 

  14. J. K. Paik, A. K. Katsaggelos, “Image restoration using a modified Hopfield network”, IEEE Trans. Image Process., vol. 36(7), 1992, pp. 49–63.

    Article  Google Scholar 

  15. Y. Sun, J. G. Li, S. Y. Yu, “Improvement on performance of modified Hopfield network for image restoration”, IEEE Trans. Image Process., vol. 5, 1995, pp. 688–692.

    Article  Google Scholar 

  16. Y. T. Zhou, R. Chellappa, A. Vaid, B. K. Jenkins, “Image restoration using a neural networks”, IEEE Trans. Acoust. Speech Signal Process., vol. 36(7), 1988, pp. 1141–1151.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira Juan V. Sánchez-Andrés

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Galán, G., Muñoz, J. (1999). A new input-output function for binary hopfield neural networks. In: Mira, J., Sánchez-Andrés, J.V. (eds) Foundations and Tools for Neural Modeling. IWANN 1999. Lecture Notes in Computer Science, vol 1606. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0098187

Download citation

  • DOI: https://doi.org/10.1007/BFb0098187

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66069-9

  • Online ISBN: 978-3-540-48771-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics