Abstract
This article describes recent improvements of an original neural network building method which could be applied in the particular case of 2 input neurones. After a brief recall of the main building principles of a neural net, authors introduce the capability for a neurone to receive more than 2 inputs. Two problems then arise: how to chose the input number of a neurone, and what becomes of the decision rule of a neurone? Treating these problems leads to an original feature selection method (based on genetic algorithms) and leads to adapt a linear discrimination algorithm to non separable problems. Experimental results for a handwritten digit recognition problem confirm the efficiency of the method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Bibliography
[BEL61] Bellman R., “Adaptive control processes”, Princeton University Press, Princeton, New Jersey, 1961.
[BEL91] Belew R.K., Mc Inerney J., Schraudolph N.N., “Evolving network: using the genetic algorithm with connectionnist learning”. In Langton C.G., Taylor C., Farmer, J.D., Rasmussen (Eds.), Artificial life II, SFI studies in the sciences of complexity, Vol. X, Addison-Wesley, Reading, pp. 511–547, 1991.
[CHE95] Chentouf R., Jutten C., “Ineremental learning with a stopping creterion experimental results”. In J. Mira, F. Sandoval (Eds.), Proceedings of Iwann’95, New-York: Springer-Verlag, New-York: Springer-Verlag, pp. 519–526, 1995.
[DEV82] Devijver P.A., Kittler, J., “Pattern recognition: a statistical approach”, Prentice-Hall, London, 1982.
[FRE90] Frean M., “The upstart algorithm: a method for constructing and training feedforward neural networks”, Neural Computation, Vol. 2, pp. 198–209 1990.
[GAL86] Gallant S.I., “Optimal linear discriminants”, In IEEE Proceedings of the 8 th Conference on Pattern Recognition Vol. 2 (pp. 849). New-York: IEEE, 1986.
[GOL89] Goldberg D.E., “Genetic algorithms in search, optimization, and machine learning”. Reading, Massachusetts: Addison-Wesley, 1989.
[HAS93] Hassibi B., Stork D.G., Wolff G.J., “Optimal brain surgeon”. In Proceedings of the 1993 IEEE International Conference on Neural Networks Vol 1, New-York: IEEE, pp. 293–299. 1993.
[HEU96] Heutte L., Moreau J.V., Paquet T., Lecourtier Y., Olivier C., “Combining Structural and statistical features for the recognition of handwritten characters”, 13 th Internat. Conf. on Pattern Recog., Vol. 2, Vienne, pp. 210–214, 1996.
[HIR91] Hirose Y., Yamashita K., Hijiya S., “Back-propagation algorithm which varies the number of hidden units”, Neural Networks, Vol. 4, pp. 61–66, 1991.
[HO65] Ho Y-C, Kashyap R.L., “An algorithm for linear inequalities and its applications”, IEEE Transactions on Elec. Comp., Vol. 14, pp. 683–688, 1965.
[KNE90] Knerr S., Personnaz, L., Dreyfus G., “Single-layer learning revisited: a stepwise procedure for building and training a neural network”. In F. Fogelman Soulie, J. Herault (Eds.), Neurocomputing, NATO ASI Series, Series F, Vol. 68, New-York: Springer-Verlag, pp. 41–50, 1990.
[LEC90] LeCun Y. Denker J.S., Solla S.A., “Optimal Brain Damage”, Procedings of the Neural Information Processing System-2. D.S. Touretzky Ed., Morgan-Kaufmann, pp. 598–605, 1990.
[LIS95] Lis J., “The synthesis of the ranked neural networks applying genetic algorithm with the dynamic probability of mutation”. In J. Mira, F. Sandoval (Eds.), Proceedings of Iwann’95, New-York: Springer-Verlag, pp. 498–504, 1995.
[MIN69] Minsky M., Papert S. “Perceptrons”, MIT Press, Cambridge (MA), 1969.
[RIB97] Ribert A., Stocker E., Lecourtier Y., Ennaji A. “Optimizing a Neural Network Architecture with an Adaptive Parameter Genetic Algorithm”. In Proceedings of Iwann’97, J. Mira, R. Moreno and J. Cabestany Eds, Springer Verlag, Berlin, Vol. 1240, pp. 527–535, 1997.
[RIB98] Ribert A., “Structuration évolutive de données: application à la construction de classifieurs distribués”, Ph.D. Thesis, University of rouen, France, 1998.
[ROS60] Rosenblatt F., “Perceptron simulation experiments”, Proceeding of the IRE, 3, 48, 1960.
[STO95] Stocker E., Lecourtier Y., Ennaji A., “A distributed classifier based on Yprel networks cooperation”. In Proceedings of Iwann’95, pp. 330–337, 1995.
[STO96] Stocker E., Ribert A., Lecourtier Y., Ennaji A., “An incremental distributed classifier building”. In 13th International Conference on Pattern Recognition (ICPR’96) Vol IV, (pp. 128–132). Washington: IEEE Computer Society Press, 1996.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ribert, A., Stocker, E., Ennaji, A., Lecourtier, Y. (1999). Classification and feature selection by a self-organizing neural network. In: Mira, J., Sánchez-Andrés, J.V. (eds) Foundations and Tools for Neural Modeling. IWANN 1999. Lecture Notes in Computer Science, vol 1606. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0098223
Download citation
DOI: https://doi.org/10.1007/BFb0098223
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66069-9
Online ISBN: 978-3-540-48771-5
eBook Packages: Springer Book Archive