Abstract
Since about twenty years, the otoneurology functional exploration possesses experimental techniques to analyze objectively the state of the nervous conduction of auditive pathway. It conerns brainstem evoked response auditory. In this paper we present a new classification approach based on a hybrid neural network technique focusing this biomedical application for developing a diagnostic tool. We have used two models of artificial neural networks: Learning Vector Quantization and Radial Basis Function ones. In our approach, these two neural networks are used to achieve the classification in a serial multi-neural network configuration. Case study and experimental results have been reported and discussed.
Preview
Unable to display preview. Download preview PDF.
References
WIDROW B., LEHR M.A., “30 years of adaptative Neural Networks: Perceptron, Madaline, and Backpropagation”, Proceeding of the IEEE, Vol. 78, pp. 1415–1441, 1990.
BENGHARBI A., “Contribution au test et diagnostic des circuits analogiques par des approches basées sur des techniques neuronales”, PhD thesis report, University of Creteil-Paris XII, 1997
AMARGER V., BENGHARBI A., MADANI K., “A New Approach to fault diagnosis of Analog Circuit using Neural Networks Based Techniques”, IEEE European Test Workshop 96 Montpellier, June 12–14, 1996.
BENGHARBI A., AMARGER, V., MADANI K., “Multi-Fault Diagnosis of Analog non Linear Circuits by Smart Classification Technique”, IEEE European Test Workshop 97, Torino, Mai, 1997.
MADANI K., BENGHARBI A., AMARGER V., “Neural Fault Diagnosis Techniques for Non Linear Analogue Circuits”, SPIE'97, Orlando, 1997.
BAZOON M., A. STACEY D., CUI C., “A Hierarchical Artificial Neural Network System for the Classification of Cervical Cells”, IEEE International Conference on Neural Networks, Orlando, July, 1994.
ALPSAN D. “Auditory Evoked Potential Classification by Unsupervised Art 2-A and Supervised Fuzzy Artmap Networks”, IEEE International Conference on Neural Networks (ICNN), Orlando, July, 1994.
KOHONEN T., “Learning Vector Quantization”, Neural Networks, vol. 1, suppl. 1, p. 303, 1988.
KOHONEN T., “Self Organizing and Associative Memory”, 3rd ed., Springer-Verlag, Germany, 1989.
NIRINJAN M., FALLSIDE F., “Neural Networks and Radial Basis Functions in classifying-static speech pattern”, Report CUED/FINFENG/TR22, Cambridge University, England, 1988.
MOTSCH J-F, “La dynamique temporelle du tronc cérébral: Recueil, extraction et analyse optimale des potentiels évoqués auditifs du tronc cérébral”, PhD thesis report (thèse d'état), University of Créteil-Paris XII, 1987.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dujardin, AS., Amarger, V., Madani, K., Adam, O., Motsch, JF. (1999). Multi-neural network approach for classification of brainstem evoked response auditory. In: Mira, J., Sánchez-Andrés, J.V. (eds) Engineering Applications of Bio-Inspired Artificial Neural Networks. IWANN 1999. Lecture Notes in Computer Science, vol 1607. Springer, Berlin, Heidelberg . https://doi.org/10.1007/BFb0100492
Download citation
DOI: https://doi.org/10.1007/BFb0100492
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66068-2
Online ISBN: 978-3-540-48772-2
eBook Packages: Springer Book Archive