Skip to main content

A bioinspired hierarchical system for speech recognition

  • Bio-inspired Systems
  • Conference paper
  • First Online:
Engineering Applications of Bio-Inspired Artificial Neural Networks (IWANN 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1607))

Included in the following conference series:

  • 157 Accesses

Abstract

Artificial speech recognition systems lack certain characteristics needed for maintaining their performance under usual conditions (background noise, continuos speech...etc). Human auditory system has been able to solve these problems through neural evolution. In this paper a bioinspired speech recognition system, which mimic the hierarchical auditory processing is proposed. It will present the desired robustness, accuracy and spectro-temporal generalization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Suga, N: “Basic Acoustic Patterns and Neural Mechanism Shared By Humans and Animals for Auditory Perception: A Neuroethologist view”. Proceedings of Workshop on the Auditory bases of Speech perception, ESCA, pp. 31–38, July 1996.

    Google Scholar 

  2. Mendelson JR, Cynader MS: “Sensitivity of Cat Primary Auditory Cortex (AI) Neurons to the Direction and Rate of Frequency Modulation”. Brain Research, 327, pp 331–335, 1985.

    Article  Google Scholar 

  3. Rauschecker JP, Tian B, Hauser M: “Processing of Complex Sounds in the Macaque Nonprimary Auditory Cortex”. Science, vol. 268, pp 111–114, 7 April 995.

    Google Scholar 

  4. Suga, N: “Cortical Computational Maps for Auditory Imaging”. Neural Networks, 3, pp. 3–21, 1990.

    Article  Google Scholar 

  5. Secker H. and Searle C.: “Time domain analysis of auditory-nerve fibers firing rates”. J. Acoust. Soc. Am. 88 (3) pp. 1427–1436, 1990.

    Article  Google Scholar 

  6. Schreiner C.E.: Order and Disorder in Auditory Cortical Maps. Curr. Op. Neurobiol., 5, pp. 489–496.

    Google Scholar 

  7. Patterson RD, Anderson TR, Allerhand M: “The Auditory Image Model as a Pre-processor for Spoken Language”. ICSLP, pp. 1395–1398, 1994.

    Google Scholar 

  8. Meddis R: “Simulator of mechanical to neural transduction in the auditory receptor”. J. Acoust. Soc. Am. 79 (3), pp. 702–711, 1986.

    Article  Google Scholar 

  9. Ferrández J.M. “Estudio y Realización de una Arquitectura Jerarquica Bio-Inspirada para el Reconocimiento del Habla” Ph.D Thesis, Universidad Politécnica de Madrid, Junio, 1998.

    Google Scholar 

  10. Mc. Dermott and Katagiri: “Shift-Invariant Multicategory Phoneme Recognition using Kohonen LVQ2”. Proceedings de ICASSP, pp. 81–84, Glasgow 1989.

    Google Scholar 

  11. K. L. Payton. Vowel processing by a model of the auditory periphery: A comparison to eight-nerve responses. J. Acoust. Soc. Am. 83 (1), pp. 145–162, January 1988.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Ferrández .

Editor information

José Mira Juan V. Sánchez-Andrés

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ferrández, J.M., Rodellar, V., Gómez, P. (1999). A bioinspired hierarchical system for speech recognition. In: Mira, J., Sánchez-Andrés, J.V. (eds) Engineering Applications of Bio-Inspired Artificial Neural Networks. IWANN 1999. Lecture Notes in Computer Science, vol 1607. Springer, Berlin, Heidelberg . https://doi.org/10.1007/BFb0100495

Download citation

  • DOI: https://doi.org/10.1007/BFb0100495

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66068-2

  • Online ISBN: 978-3-540-48772-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics