Abstract
In this work we study the effectiveness of the Fuzzy Kohonen Clustering Network (FKCN) in the unsupervised classification of electron microscopic images of biological macromolecules. The algorithm combines Kohonen's Self-Organizing Feature Maps (SOM) and Fuzzy c-means clustering technique (FCM) in order to obtain a powerful clustering technique that inherits their best properties. Two different data sets obtained from the G40P helicase from B. Subtilis bacteriophage SPP1 have been used for testing the proposed method, one composed of 2458 rotational power spectra of individual images and the other composed by 338 images from the same macromolecule. Results of FKCN are compared with Self-Organizing Maps (SOM) and manual classification. Experimental results have proved that this new technique is suitable for working with large, high dimensional and noisy data sets. This method is proposed to be used as a classification tool in Electron Microscopy.
Preview
Unable to display preview. Download preview PDF.
References
Van Heel, M., Frank J.: Use of multivariate statistics in analyzing the images of biological macromolecules. Ultramicroscopy 6 (1981) 187–194.
Frank, J., Van Heel, M.: Correspondence analysis of aligned images of biological particles. J. Mol. Biol. 161 (1982) 134–137.
Van Heel, M.: Multivariate statistical classification of noisy images (randomly oriented biological macromolecules). Ultramicroscopy 13 (1984) 165–184.
Frank, J., Betraudiere, J.P., Carazo, J.M., Verschoor, A., Wagenknecht, T.: Classification of images of biomolecular assemblies. A study of ribosomes and ribosomal subunits of Escherichia coli. J. Microsc. 150 (1988) 99–115.
Carazo, J.M., Rivera, F.F., Zapata, E.L., Radermacher, M., Frank, J.: Fuzzy set based classification of electron microscopy images of biological macromolecules with an application to ribosomal particles. J. Microsc. 157 (1990) 187–203.
Marabini, R., Carazo, J.M.: Pattern Recognition and Classification of Images of Biological Macromolecules using Artificial Neural Networks. Biophysical Journal 66 (1994) 1804–1814.
Kohonen, T.: Self-Organizing Maps, 2nd Edition, Springer-Verlag (1997).
Siemon, H.P.: Selection of Optimal Parameters for Kohonen Self-organizing Feature Maps. Artificial Neural Networks 2 (1992) 1573–1577.
Villmann, T., Der, R., Herrmann, M., Martinetz, T.M.: Topology Preservation in Self-Organizing Feature Maps: Exact Definition and Measurement. IEEE Transactions on Neural Networks 8 (1997) 256–266.
Bezdek, J. C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York. (1984).
Chen. Kuo Tsao, E., Bezdek, J. C., Pal, N. R.: Fuzzy Kohonen Clustering Networks. Pattern Recognition 27 (1994) 757–764.
Jin-Shin Chou, Chin-Tu Chen, Wei-Chung Lin: Segmentation of Dual-echo MR Images using Neural Networks. Image Processing 1998 (1993) 220–227.
Diago, L.A., Pascual, A., Ochoa, A.: A Genetic Algorithm for Automatic Determination of the Cup/Disc Ratio in Eye Fundus Images. Proceedings TIARP'98, Mexico (1998) 461–472.
Barcena, M., San Martín, C., Weise, F., Ayora, S. Alonso, J. C., Carazo, J. M.: Polymorphic quaternary organization of the Bacillus subtilis bacteriophage SPP1 replicative helicase (G40P). Journal of Molecular Biology (1988) (in press).
Crowther, R.A., Amos, L.A.: Harmonic analysis of electron microscope images with rotational symmetry. J. Mol. Biol. 60 (1971) 123–130.
Rivera, F.F., Zapata, E.L., Carazo, J.M.: Cluster validity based on the hard tendency of the fuzzy classification. Pattern Recognition Letters 11 (1990) 7–12.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pascual, A., Barcéna, M., Merelo, J.J., Carazo, JM. (1999). Application of the Fuzzy Kohonen Clustering Network to biological macromolecules images classification. In: Mira, J., Sánchez-Andrés, J.V. (eds) Engineering Applications of Bio-Inspired Artificial Neural Networks. IWANN 1999. Lecture Notes in Computer Science, vol 1607. Springer, Berlin, Heidelberg . https://doi.org/10.1007/BFb0100500
Download citation
DOI: https://doi.org/10.1007/BFb0100500
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66068-2
Online ISBN: 978-3-540-48772-2
eBook Packages: Springer Book Archive